
Binary Decision Diagrams

Giovanni De Micheli
Integrated Systems Laboratory

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed
© Giovanni De Micheli – All rights reserved

(c) Giovanni De Micheli 2

Module 1

!Objectives:
!Definitions of BDDs, OBDDs and ROBDDs
!Logic operations on BDDs
!The ITE operator

2020 US election – while counting one day after

(c) Giovanni De Micheli 3

(c) Giovanni De Micheli 6

Motivation

! Efficient way to represent logic functions

! History
!Original idea for BDD due to Lee (1959) and Akers (1978)
!Refined, formalized and popularized by Bryant (1986)

! Smaller memory footprint
! Canonical form – each distinct function correspond to a unique distinct

diagram

(c) Giovanni De Micheli 7

" Each logic function has a unique representation

" Truth table

" Sum of minterms

Canonical forms - review

a b c F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

a’bc+ab’c+abc

(c) Giovanni De Micheli 8

Non canonical forms - review

!Each function has also multiple representations

!Factored form

!Logic network representation

(a+b)c ac+bc

a
b

c

a

b

c

(c) Giovanni De Micheli 9

Terminology

! A Binary Decision Diagram (BDD) is a directed acyclic graph

!Graph: set of vertices connected by edges
!Directed: edges have direction
!Acyclic: no path in the graph can lead to a cycle

!Often abbreviated as DAG
!Simplest model:

! Two leaves (Boolean constants 0 and 1)
! One root
! Can degenerate to a tree

(c) Giovanni De Micheli 10

BDD - Example

!F = (a + b) c

0 1a

00

0 1

b b

0 1

0 1

c c

cb

1100

0 1 0 10 1 0 1

a b c F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

1. Each vertex represents a decision on a variable
2. The value of the function is found at the leaves
3. Each path from root to leaf corresponds to a

row in the truth table

(c) Giovanni De Micheli 11

BDD - observations

!The size of a BDD is as big as a truth table:
!1 leaf per row
!Exponential size

!Each path from root to leaf evaluates variables in some order
- But the order is not fixed:
- (a,b,c) and (a,c,b)
- Free BDD 0 1a

00

0 1

b b
0 1

0 1

c c

cb

1100

0 1 0 10 1 0 1

(c) Giovanni De Micheli 12

1st idea: Ordered BDD (OBDD)

!Choose arbitrary total ordering on the variables
!Variables must appear in the same order along each path from

root to leaves
!Each variable can appear at most once on a path

0 1a

10

0 1

c c

0 1

0 1

c c

bb

1000

0 1 0 10 1 0 1

example:
a < b < c

(c) Giovanni De Micheli 13

2nd idea: Reduced OBDD (ROBDD)

! Two reduction rules:
1. Merge equivalent sub-trees
2. Remove nodes with identical children

0 1a

10

0 1

c c

0 1

0 1

c c

bb

1000

0 1 0 10 1 0 1

(c) Giovanni De Micheli 14

1. Merge equivalent sub-trees

0 1a

0 10 1

c

bb

0 1 c

10

0 1

0 1a

10

0 1

c c

0 1

0 1

c c

bb

1000

0 1 0 10 1 0 1

before after

(c) Giovanni De Micheli 15

2. Remove node with identical children

0 1a

0 10 1

c

bb

0 1 c

10

0 1

before after

0 1a

0 1b

c

10

0 1

(c) Giovanni De Micheli 16

ROBDDs

! ROBDDs are canonical
" For a given variable order

! ROBDD are more compact than other
canonical forms
" Efficient representation

! ROBDD size depends on the variable order
" Many useful functions have linear-space

(or slightly above) representation

0 1

x4 x4

x3 x3

x2 x2

x1

4321 xxxxF ⊕⊕⊕=

(c) Giovanni De Micheli 17

BDD semantics

Constant nodes

0 1

x0 1

ITE(x,F1,F0)

then edgeelse edge

0-cofactor 1-cofactor

F0 F1

Cofactor(F,x): the function you obtain when you substitute 1 for x in F

(c) Giovanni De Micheli 18

A few simple functions

x

10

0 1

0 1

F = 0 F = 1

F = x

0 1a

0 1b

c

10

0 1

F = c

F = (a+b)c

F = bc

F = 1

(c) Giovanni De Micheli 19

A network example

a
10

0 1

b
10

0 1

c
10

0 1

a0 1

c
10

0 1

b0 1

c
10

0 1

0 1a

0 1b
c
10

0 1

(c) Giovanni De Micheli 20

ROBDD- sharing

We already share subtrees within a ROBDD

…but we can share also among multiple ROBDDS

shared

0 1a

0 1b

c

10

0 1

0 1d
Order:
d < a < b < c

G = dbc

F = (a+b)c

(c) Giovanni De Micheli 21

ROBDDs- why do we care ?
! Easy to solve some important problems:

1. Tautology checking
Just check if BDD is identical to function

2. Identity checking: F = G

3. Satisfiability
Look for a path from root to leaf 1

! All while having a compact representation
" Use small memory footprint

1

Logic operations with ROBDDs

1. Cofactor
!Given: ROBDD for 𝐆
!Positive co-factor 𝐆𝐱 wrt. 𝑥: restrict 𝐆 to 𝑥 = 1

Remove every node with label 𝑥, redirect incoming edges to node with then edge

!Negative co-factor 𝐆𝐱" wrt. 𝑥: restrict 𝐆 to 𝑥 = 0
Remove every node with label 𝑥, redirect incoming edges to node with else edge

(c) Giovanni De Micheli 22

x0 1
then edgeelse edge

0-cofactor 1-cofactor

F0 F1

Logic operations with ROBDDs

2. Boolean operators ⋆ (⋅, +, ⊕, …)
!Given: two ROBDD for 𝐆, 𝐇
!Find: the ROBDD of 𝐆 ⋆ 𝐇

! ite operator:
! ite(f,g,h) = fg + f’h
! If (f) then (g) else (h)

!Recursive paradigm
! Exploit the generalized expansion of G and H
ite (f,g,h) = ite(x,ite(fx,gx,hx),ite(fx’, gx’,hx’))

(c) Giovanni De Micheli 23

(c) Giovanni De Micheli 24

Example

!Apply AND to two ROBDDs: f,g
! fg = ite (f,g,0)

!Apply OR to two ROBDDs: f,g
! f+g = ite (f,1,g)

!Similar for other Boolean operators

(c) Giovanni De Micheli 25

Boolean operators

(c) Giovanni De Micheli 26

ROBDD construction – terminal cases (AND)

!Consider a simple example: compute AND of two ROBDDs

!Terminal cases:
!AND (0,H) = 0
!AND (1,H) = H
!AND (G,0) = 0
!AND (G,1) = G

(c) Giovanni De Micheli 27

ROBDD construction – recursive step (AND)

!G(x,…) =x’ Gx=0+ x Gx=1

!H(x,…) =x’ Hx=0+ x Hx=1

!F = GH = x’ Gx=0 Hx=0 + x Gx=1Hx=1
x0 1

F

Gx=0Hx=0 Gx=1Hx=1

Now we have reduced the
problem to computing 2
ANDs of smaller functions

(c) Giovanni De Micheli 28

One last problem

! Suppose we have computed
Gx=0 Hx=0 and Gx=1Hx=1

! We need to construct a new node,
! label: x
! 0-cofactor(Fx=0): ROBDD of Gx=0 Hx=0

! 1-cofactor(Fx=1): ROBDD of Gx=1 Hx=1

! BUT, we need first to make sure that we don’t violate the
reduction rules!

(c) Giovanni De Micheli 29

The unique table

To obey reduction rule #1:
! If Fx=0 == Fx=1, the result is just Fx=0

To obey reduction rule #2:
! We keep a unique table of all the BDD nodes and check first if

there is already a node
(x, Fx=0, Fx=1)

Otherwise, we build the new node
! And add it to the unique table

(c) Giovanni De Micheli 30

Putting all together

AND(G,H) {
if (G==0) || (H==0) return 0;
if (G==1) return H;
if (H==1) return G;
cmp = computed_table_lookup(G,H);
if (cmp != NULL) return cmp;

x = top_variable(G,H);
G1 = G.then; H1 = H.then;
G0 = G.else; H0 = H.else;
F0 = AND(G0,H0);
F1 = AND(G1,H1);
if (F0 == F1) return F0;
F = find_or_add_unique_table(x,F0,F1);
computed_table_insert(G,H,F);
return F;

}

(c) Giovanni De Micheli 31

Generalizing to Boolean operators

ITE(F,G,H) {

if (terminal case) return (r = trivial result);
cmp = computed_table_lookup(G,H);
if (cmp != NULL) return (r = cmp);

x = top_variable(F,G,H);
t = ITE (Fx , Gx , Hx)
e = ITE (Fx’ , Gx’ , Hx’)

if (t == e) return (r = t);
r = find_or_add_unique_table(x,t,e);
computed_table_insert{(F,G,H),r};
return (r);

}

(c) Giovanni De Micheli 32

Logic operations - summary

!Recursive routines – traverse the DAGs depth first

!Two tables:
!Unique table – hash table with an entry for each BDD node
!Computed table – store previously-computed partial results

!Time complexity is quadratic in the BDD sizes

(c) Giovanni De Micheli 33

Some algorithmic complexities

!Checking tautology K time
!Checking identity K time

!Satisfiability linear (#vars)

!Binary operators: AND, OR quadratic
!Smoothing, Consensus quadratic

(c) Giovanni De Micheli 34

Motivation - again

!Why are ROBDD popular?
!Several intractable problems can be solved in polynomial time

! Of the BDD size

! In several cases, the BDD sizes grow mildly with the problem size
! Variables

!This does not mean that BDD solve intractable problems in
polynomial time
!Few counterexamples exists

(c) Giovanni De Micheli 35

Module 2

!Objectives:
!Variable ordering (static and dynamic)
!Other diagrams and applications

(c) Giovanni De Micheli 36

The importance of variable order

0 1

c c

d d

a

b

0 1

d d

a

c

bb

cc c

))((cbdaF ⊕⊕=

(c) Giovanni De Micheli 37

Ordering results

! In practice:
! Many common functions have reasonable size
! Can build ROBDDs with millions of nodes
! Algorithms to find good variables ordering

Function type Best order Worst order

addition linear exponential

symmetric linear quadratic

multiplication exponential exponential

(c) Giovanni De Micheli 38

Variable ordering algorithms

!Problem: given a function F, find the variable order
that minimizes the size of its ROBBDs

!Answer: problem is intractable

!Two heuristics
!Static variable ordering (1988)
!Dynamic variable ordering (1993)

(c) Giovanni De Micheli 39

Static variable ordering

! Variables are ordered based on the network topology
! How: put at the bottom the variables that are closer to circuit’s

outputs
! Why: because those variables only affect a small part of the

circuit

! Disclaimer: it is a heuristic, results are not guaranteed

a
b

c
good order: a < b < c

(c) Giovanni De Micheli 40

Dynamic variable ordering

!Changes the variable order on the fly whenever
ROBDDs become too big

!How: trial and error – sifting algorithm
1. Choose a variable
2. Move it in all possible positions of the variable order
3. Pick the position that leaves you with the smallest ROBDDs
4. Choose another variable …

(c) Giovanni De Micheli 41

Dynamic variable ordering

0 1a

0 1b
c
10

0 1

0 1c

0 1a
b
10

0 1

0 1c
b
10

0 1

a0 1

c0 1

! Tiny example: F=(a+b)c
" We want to find the optimal position for variable c

initial order:
a < b < c

Swap (b, c):
a < c < b

Swap (a, c):
c < a < b

Final order:
c<a<b

(c) Giovanni De Micheli 42

Variable swapping

F

F1F0

F00 F01 F10 F11

xi+1xi+1

xi

F F1F0

F00 F01 F10 F11

xixi

xi+1xi+1 xi+1

)),,(),,,(,(
)),,(),,,(,(

),,(

001001111

0001110111

01

FFxITEFFxITExITE
FFxITEFFxITExITE

FFxITE

iii

iii

i

+

++

=

=

=

(c) Giovanni De Micheli 43

Dynamic variable ordering

!Key idea: swapping two variables can be done locally
!Efficient:

! It can be done just by sweeping the unique table

!Robust:
! It works well on many more circuits

!Warning:
! It is still non optimal
!At convergence, you most probably have found only a local minimum

(c) Giovanni De Micheli 44

Improvements on BDDs

! Complement edges (1990)
" Creates more opportunities for sharing

! Fewer nodes

" For every pair (F,F’), we
! Only construct the ROBDD for F
! F’ is given by using a complement edge to F

" Which do you pick ?
! THEN edge can never be complemented
! Only constant value

F F’

1

(c) Giovanni De Micheli 45

Complement edges

!F = x

!Still canonical

x

1

0 1 x

1

0 1

1

x40 1

x30 1

x20 1

4321 xxxxF ⊕⊕⊕=

x10 1

(c) Giovanni De Micheli 46

Other types of Decision Diagram

! Based on different expansion
! OFDD
! Ordered functional decision diagrams

! For discrete functions:
! ADD
! Algebraic decision diagrams

)(100 === ⊕⊕= xxx FFxFF

x1x1

x0

10 2 3

(c) Giovanni De Micheli 47

Boolean functions and sets of combinations

Observing customers:
Pasta & tomantoes & (not pesto)
Pesto & (not tomatoes)

We care about what they take

(c) Giovanni De Micheli 48

ZDDs -- Zero-suppressed BDDs

! BDDs with different reduction rules
" Eliminate all nodes whose 1-edge points to the 0-leaf and redirect incoming

edges to the 0-subgraph
" Share all equivalent subgraphs

! If item x does not appear in any itemset, the ZDD node is eliminated
" When average occurrence ratio of each item is 1%, than ZDD are more efficient

than BDDs (up to 100 times)

ZDD - example

! Itemset {a,b}; characteristic function F = ab’c’ + a’bc’

(c) Giovanni De Micheli 49

b

a

1

c

0

b b

a

10

b b

a

10

Eliminate all nodes whose 1-edge points to the 0-leaf and redirect
incoming edges to the 0-subgraph

11 1

11

1

1

11

0

0

00

0 00
0

0

(c) Giovanni De Micheli 51

Summary

! BDDs
+ Very efficient data structure
+ Efficient manipulation routines

– A few important functions don’t come out well
– Variable order can have a high impact on size

! Application in many areas of CAD
! Hardware verification
! Logic synthesis

