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Module 1

¢ Objectives:
A Definitions of BDDs, OBDDs and ROBDDs

ALogic operations on BDDs

AThe ITE operator
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2020 US election — while counting one day after

2020
Number of Paths
To the Presidency
Q Pennsylvania
Joe Biden
27
84% of paths Georgia

Donald Trump

4 Q N. Carolina

13% of paths
1 tie (3%) Q Q Q Arizona
© o <o Nevada
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Motivation

¢ Efficient way to represent logic functions

¢ History

A Original idea for BDD due to Lee (1959) and Akers (1978)

A Refined, formalized and popularized by Bryant (1986)

v Smaller memory footprint

v Canonical form - each distinct function correspond to a unique distinct
diagram
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Canonical forms - review

¢ Each logic function has a unique representation

¢ Truth table
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. a’ bc+ab’ c+abc
¢ Sum of minterms
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Non canonical forms - review

# Each function has also multiple representations

# Factored form (a+b)c Sctbe

¢ Logic network representation
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Terminology

¢ A Binary Decision Diagram (BDD) is a directed acyclic graph
A Graph: set of vertices connected by edges

ADirected: edges have direction

AAcyclic: no path in the graph can lead to a cycle

¢ Often abbreviated as DAG

A Simplest model:

v Two leaves (Boolean constants 0 and 1)
v One root
v Can degenerate to a tree
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eF=(ath)c
a b c|F
0 0 00
0 0 110
0 1 00
0 1 1|1
1 0 010
1 0 1 |1
1 1 010
1 1 11
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BDD - Example

. Each vertex represents a decision on a variable
. The value of the function is found at the leaves
. Each path from root to leaf corresponds to a

row in the truth table
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BDD - observations

¢ The size of a BDD is as big as a truth table:

A1 leaf per row

A Exponential size

¢ Each path from root to leaf evaluates variables in some order

- But the order is not fixed:
- (a,b,c) and (a,c,b)
- Free BDD
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1stidea: Ordered BDD (OBDD)

¢ Choose arbitrary total ordering on the variables

A Variables must appear in the same order along each path from
root to leaves

A Each variable can appear at most once on a path

example:
a<b<c
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2"d jdea: Reduced OBDD (ROBDD)

¢ Two reduction rules:

1. Merge equivalent sub-trees

2. Remove nodes with identical children

(c) Giovanni De Micheli
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1. Merge equivalent sub-trees

before after
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2. Remove node with identical children

before
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ROBDDs

& ROBDDs are canonical

A For a given variable order

¢ ROBDD are more compact than other
canonical forms

A Efficient representation

¢ ROBDD size depends on the variable order

A Many useful functions have linear-space
(or slightly above) representation

(c) Giovanni De Micheli
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BDD semantics

Constant nodes

ITE(X,F1,FO)
0 1
else edge then edge
O-cofactor 1-cofactor
=7 Pl

Cofactor(F,x): the function you obtain when you substitute 1 for x in F
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A few simple functions

/ F = (a+b)C
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A network example
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ROBDD- sharing

We already share subtrees within a ROBDD

...but we can share also among multiple ROBDDS

F = (a+b)c
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ROBDDs- why do we care ?

¢ Easy to solve some important problems:

1. Tautology checking
Just check if BDD is identical to function

2. Identity checking: F =G

3. Satisfiability
Look for a path from root to leaf 1

¢ All while having a compact representation
A Use small memory footprint

(c) Giovanni De Micheli
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Logic operations with ROBDDs

Cofactor
A Given: ROBDD for G

A Positive co-factor G, wrt. x: restrict Gtox = 1
Remove every node with label x, redirect incoming edges to node with then edge

A Negative co-factor G,, wrt. x: restrict Gtox = 0
Remove every node with label x, redirect incoming edges to node with else edge

else edge then edge
O-cofactor 1-cofactor
g Palhas
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2.

Logic operations with ROBDDs

Boolean operators * (-, +, &, ...)

A Given: two ROBDD for G, H
AFind: the ROBDD of G x H

Aite operator:
v ite(f,g,h) =fg + fh
v If (f) then (g) else (h)

ARecursive paradigm

v Exploit the generalized expansion of G and H
ite (f,g,h) = ite(x,ite(f,,9,,h,).ite(f,, g, ,h,’))

(c) Giovanni De Micheli
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Example

¢ Apply AND to two ROBDDs: f,g
Afg =ite (f,g,0)

¢ Apply OR to two ROBDDs: f,g
Af+g =ite (f,1,9)

¢ Similar for other Boolean operators

(c) Giovanni De Micheli
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Boolean operators
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Operator | Equivalent ite form

0
ite(f,qg.0)
ite(f,g',0)

f
ite(f,0,9)

g
ite(f, 9, 9)
ite(f,1,9)
ite(f,0,9")
l[f(f* gsgl)
ite(g.0,1)
ite(f,1,9)
ite(f.0,1)
ite(f,g,1)
ite(f,g',1)

1
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ROBDD construction - terminal cases (AND)

¢ Consider a simple example: compute AND of two ROBDDs

¢ Terminal cases:
AAND (0,H)=0
AAND (1,H) =H
AAND (G,0)=0
AAND (G,1)=G
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ROBDD construction - recursive step (AND)
¢ G(X,...) =X’ G,o* x G,

& H(x,...) =X H,o+ X H,_,

‘ F = GH = X’ Gx=0 Hx=0 + X Gx=1 Hx=1

Now we have reduced the

problem to computing 2
ANDs of smaller functions

(c) Giovanni De Micheli
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One last problem

¢ Suppose we have computed
Gy Hypand G,-4H,-;

¢ We need to construct a new node,
A label: x
A 0-cofactor(F,-y): ROBDD of G,_,H,-
A 1-cofactor(F,-,): ROBDD of G,_, H,-;

¢ BUT, we need first to make sure that we don’ t violate the
reduction rules!
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The unique table

To obey reduction rule #1:
A IfF,.,==F,., the resultis just F,.,

To obey reduction rule #2:

A We keep a unique table of all the BDD nodes and check first if
there is already a node

(X, I:x=0! I:x=1)

Otherwise, we build the new node
A And add it to the unique table
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Putting all together

AND(G,H) {
if (G==0) || (H==0) return O;
if (G==1) return H;
if (H==1) return G;

G.then; H1 = H.then;

G.else; HO = H.else;

FO = AND(GO,HO0);

F1 = AND(G1,H1);

if (FO == F1) return FO;

F = find_or_add_unique_table(x,FO,F1);

x = top_variable(G,H);
Gl =
GO =

return F;

(c) Giovanni De Micheli
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Generalizing to Boolean operators

ITE(F,G,H) {

if (terminal case) return (r = trivial result);
cmp = computed_table_lookup(G,H);
if (cmp !'= NULL) return (r = cmp);

x = top_variable(F,G,H);
t =ITE(FXIGXIHX)
e =ITE (Fy, Gy, Hy)

if (t == e) return (r = t);

r = find_or_add_unique_table(x,t,e);
computed_table_insert{(F,G,H),r};
return (r);

(c) Giovanni De Micheli
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Logic operations - summary

¢ Recursive routines - traverse the DAGs depth first

¢ Two tables:
A Unique table — hash table with an entry for each BDD node

A Computed table - store previously-computed partial results

¢ Time complexity is quadratic in the BDD sizes
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Some algorithmic complexities

A Checking tautology K time
A Checking identity K time
A Satisfiability linear (#vars)

ABinary operators: AND, OR quadratic

A Smoothing, Consensus quadratic
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Motivation - again

¢ Why are ROBDD popular?

A Several intractable problems can be solved in polynomial time
v Of the BDD size

Aln several cases, the BDD sizes grow mildly with the problem size

v Variables

¢ This does not mean that BDD solve intractable problems in
polynomial time

A Few counterexamples exists
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Module 2

¢ Objectives:

A Variable ordering (static and dynamic)

A Other diagrams and applications

(c) Giovanni De Micheli
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The importance of variable order

F=@®d)b®c)

(c) Giovanni De Micheli
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Ordering results

Function type Best order Worst order
addition linear exponential
symmetric linear quadratic

multiplication exponential exponential

A In practice:

v Many common functions have reasonable size
v Can build ROBDDs with millions of nodes
v Algorithms to find good variables ordering

(c) Giovanni De Micheli
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Variable ordering algorithms

¢ Problem: given a function F, find the variable order
that minimizes the size of its ROBBDs

¢ Answer: problem is intractable

¢ Two heuristics
A Static variable ordering (1988)

A Dynamic variable ordering (1993)

(c) Giovanni De Micheli
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Static variable ordering

¢ Variables are ordered based on the network topology

A How: put at the bottom the variables that are closer to circuit’ s
outputs

A Why: because those variables only affect a small part of the
circuit

d

b :’_—_.. good order: a < b < C
C

A Disclaimer: it is a heuristic, results are not guaranteed
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Dynamic variable ordering

¢ Changes the variable order on the fly whenever
ROBDDs hecome too big

¢ How: trial and error - sifting algorithm

1. Choose a variable

2. Move it in all possible positions of the variable order

3. Pick the position that leaves you with the smallest ROBDDs
4. Choose another variable ...

(c) Giovanni De Micheli
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Dynamic variable ordering

¢ Tiny example: F=(atb)c

A We want to find the optimal position for variable ¢

initial order: Swap (b, ¢): Swap (a, ¢):
a<b<c a<c<b c<a<b

(c) Giovanni De Micheli

Final order:
c<a<b
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Variable swapping

ITE(x,,F,F)) =
_[TE(X ITE(X e 119 10) [TE(X+19 01° 00))
= ITE(x, ITE(x ,F ,F ), ITE(x ,F,F,))

(c) Giovanni De Micheli
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Dynamic variable ordering

¢ Key idea: swapping two variables can be done locally

AEfficient:
v It can be done just by sweeping the unique table

ARobust:
v It works well on many more circuits
AWarning:

v It is still non optimal
v At convergence, you most probably have found only a local minimum
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Improvements on BDDs

¢ Complement edges (1990)

A Creates more opportunities for sharing
v Fewer nodes

A For every pair (F,F’ ), we
v Only construct the ROBDD for F
v F’ is given by using a complement edge to F

A Which do you pick ?

v THEN edge can never be complemented
v Only constant value [}

(c) Giovanni De Micheli

44



Complement edges

oF=x o
& 8

N~

1 1

F=x®x ®x, Dx,

¢ Still canonical
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Other types of Decision Diagram

¢ Based on different expansion
A OFDD
A Ordered functional decision diagrams

F=F ®x(F_®F_)
¢ For discrete functions:

A ADD @

A Algebraic decision diagrams @
0 [1] [2] 73]
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Boolean functions and sets of combinations

Boolean function:

abic|F F=@b~c)V (~bc)
0[{0|0]|0 gm e

Set of combinations: B R e
11000 F = {ab, ac, c} ‘esto&(noi tomatoes)
ol110!0 \ T , Wef.'are/ about whatthe
1/1/0|1|>gh  (customer’s choice) o
0(0/1| 1|2 ¢ = Operations of combinatorial itemsets
1lol1l 1> a canbe done by BDD-based logic

operations.

0/1{1/0 = Union of sets - logical OR
1111110 = Intersection of sets - logical AND

= Complement set - logical NOT
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ZDDs -- Zero-suppressed BDDs

& BDDs with different reduction rules

A Eliminate all nodes whose 1-edge points to the 0-leaf and redirect incoming
edges to the 0-subgraph

A Share all equivalent subgraphs

¢ If item x does not appear in any itemset, the ZDD node is eliminated

A When average occurrence ratio of each item is 1%, than ZDD are more efficient
than BDDs (up to 100 times)

(Jump)

) |

/\

./’/f\ \ L / f\ 1/ \\

Ordinary BDD reduction Zero-suppressed reduction
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ZDD - example

¢ Itemset {a,b}; characteristic function F = ab’c’ + a’bc’

Eliminate all nodes whose 1-edge points to the 0-leaf and redirect
incoming edges to the 0-subgraph
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Summary

¢ BDDs

+ Very efficient data structure
+ Efficient manipulation routines

- A few important functions don’ t come out well
- Variable order can have a high impact on size

¢ Application in many areas of CAD
A Hardware verification
A Logic synthesis
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