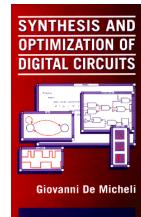


Binary Decision Diagrams

Giovanni De Micheli
Integrated Systems Laboratory



This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli – All rights reserved

Module 1

◆ Objectives:

- ▲ Definitions of BDDs, OBDDs and ROBDDs
- ▲ Logic operations on BDDs
- ▲ The ITE operator

2020 US election – while counting one day after

2 0 2 0

Number of Paths To the Presidency

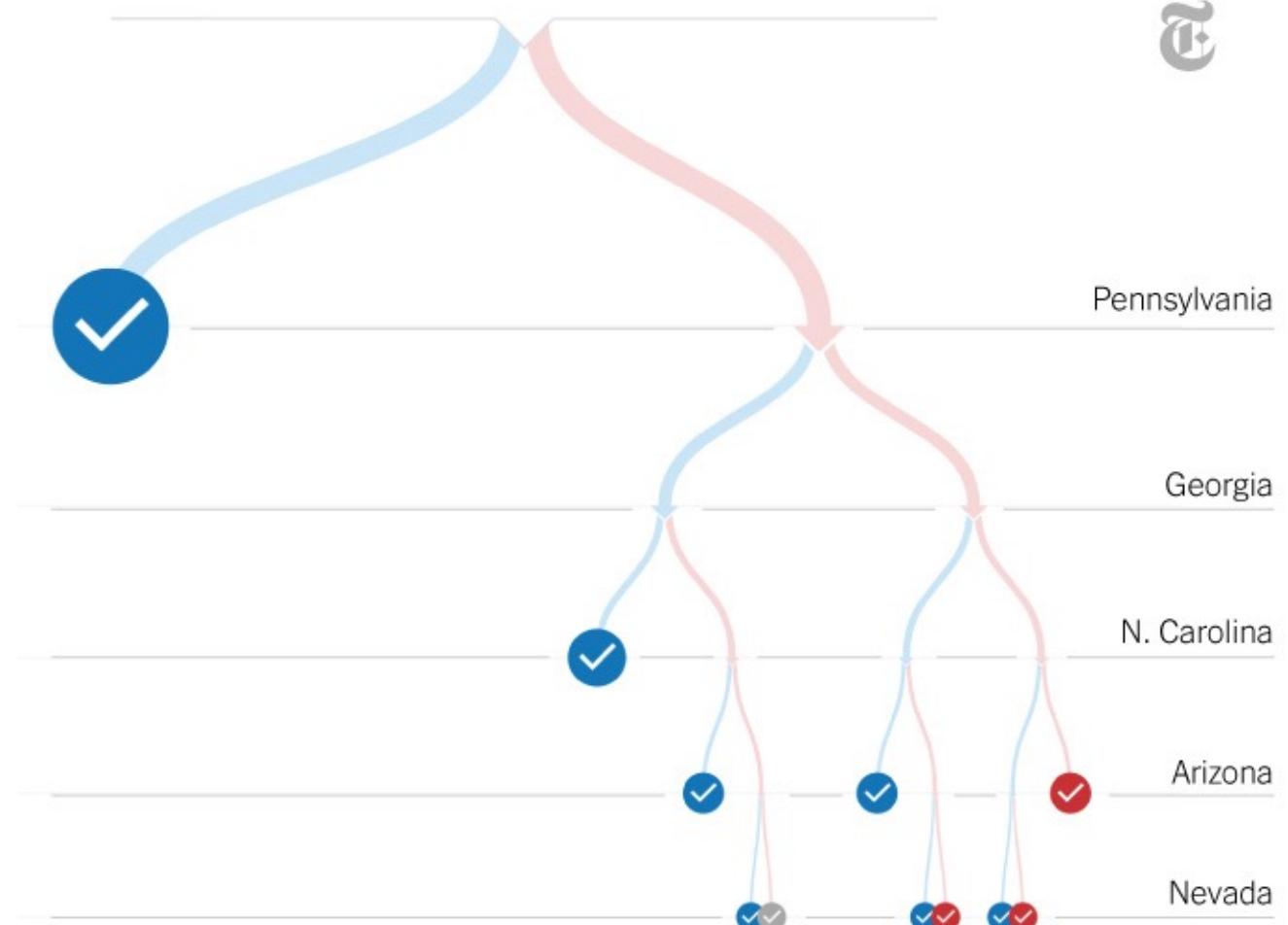
Joe Biden
27

84% of paths

Donald Trump
4

13% of paths

1 tie (3%)



Motivation

- ◆ Efficient way to represent logic functions
- ◆ History
 - ▲ Original idea for BDD due to Lee (1959) and Akers (1978)
 - ▲ Refined, formalized and popularized by Bryant (1986)
 - ▼ Smaller memory footprint
 - ▼ Canonical form – each distinct function correspond to a unique distinct diagram

Canonical forms - review

- ◆ Each logic function has a unique representation

- ◆ Truth table

a	b	c	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- ◆ Sum of minterms

$$a'bc + ab'c + abc$$

Non canonical forms - review

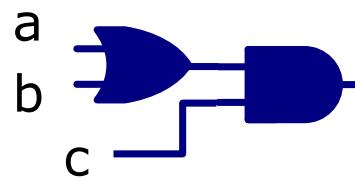
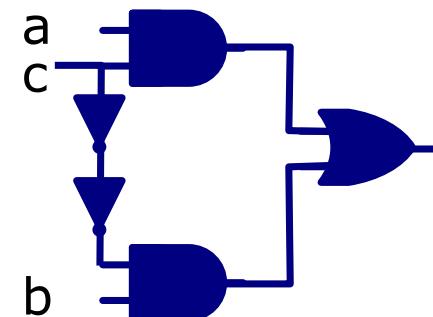
- ◆ Each function has also multiple representations

- ◆ Factored form

$$(a+b)c$$

$$ac+bc$$

- ◆ Logic network representation



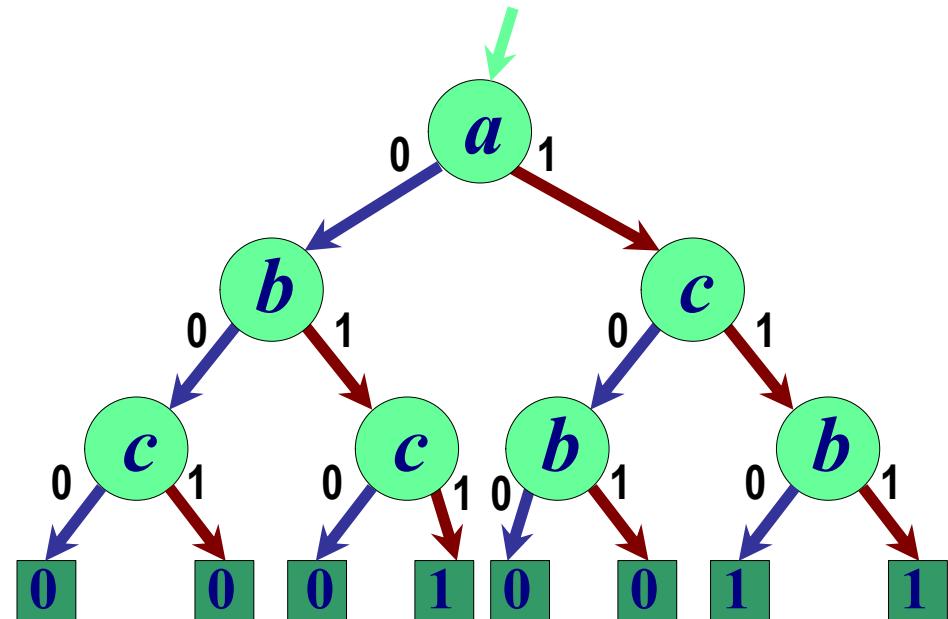
Terminology

- ◆ A Binary Decision Diagram (BDD) is a *directed acyclic graph*
 - ▲ **Graph**: set of vertices connected by edges
 - ▲ **Directed**: edges have direction
 - ▲ **Acyclic**: no path in the graph can lead to a cycle
- ◆ Often abbreviated as DAG
 - ▲ **Simplest model**:
 - ▼ Two leaves (Boolean constants 0 and 1)
 - ▼ One root
 - ▼ Can degenerate to a tree

BDD - Example

$$\diamond F = (a + b) c$$

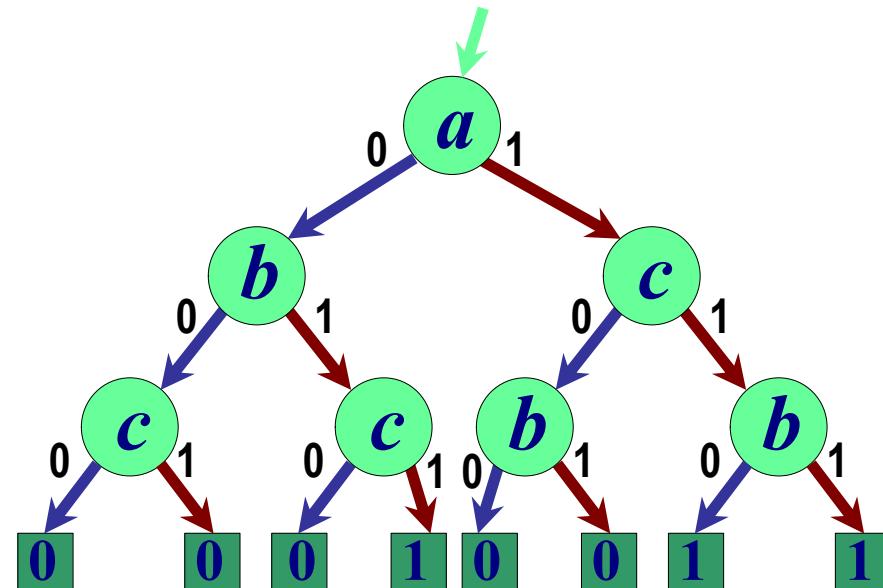
a	b	c	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1



1. Each vertex represents a decision on a variable
2. The value of the function is found at the leaves
3. Each path from root to leaf corresponds to a row in the truth table

BDD - observations

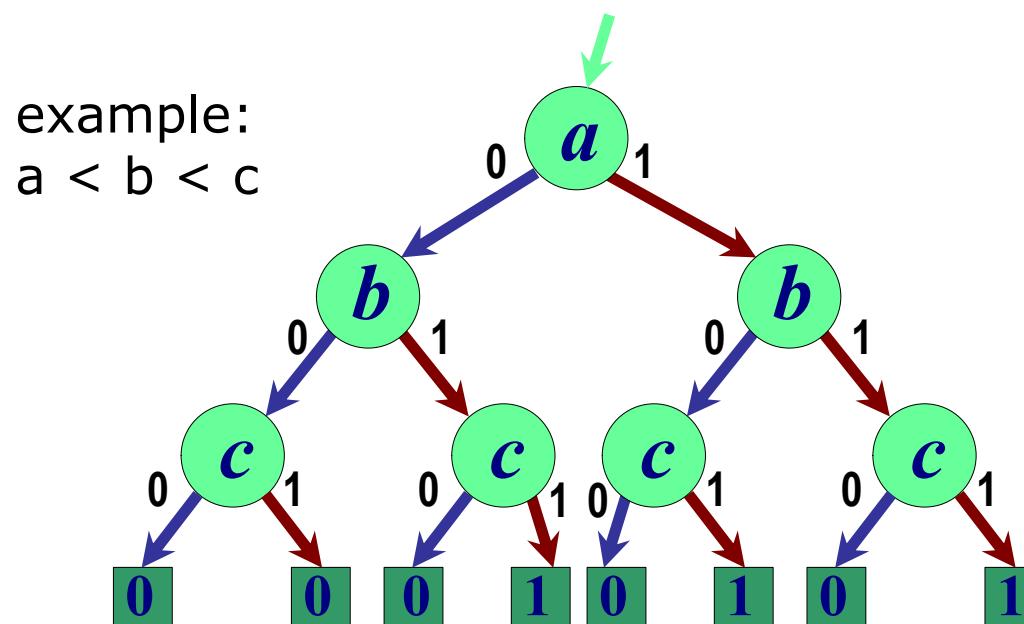
- ◆ The size of a BDD is as big as a truth table:
 - ▲ 1 leaf per row
 - ▲ Exponential size
- ◆ Each path *from root to leaf* evaluates variables in some order
 - But the order is not fixed:
 - (a,b,c) and (a,c,b)
 - Free BDD



1st idea: Ordered BDD (OBDD)

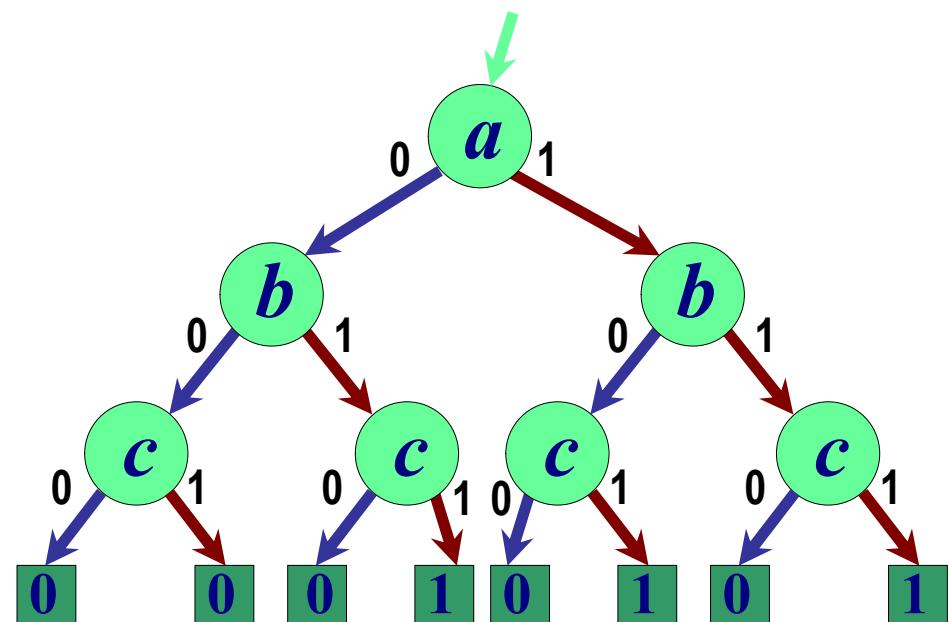
- ◆ Choose arbitrary total ordering on the variables

- ▲ Variables must appear in the same order along each path from root to leaves
- ▲ Each variable can appear at most once on a path

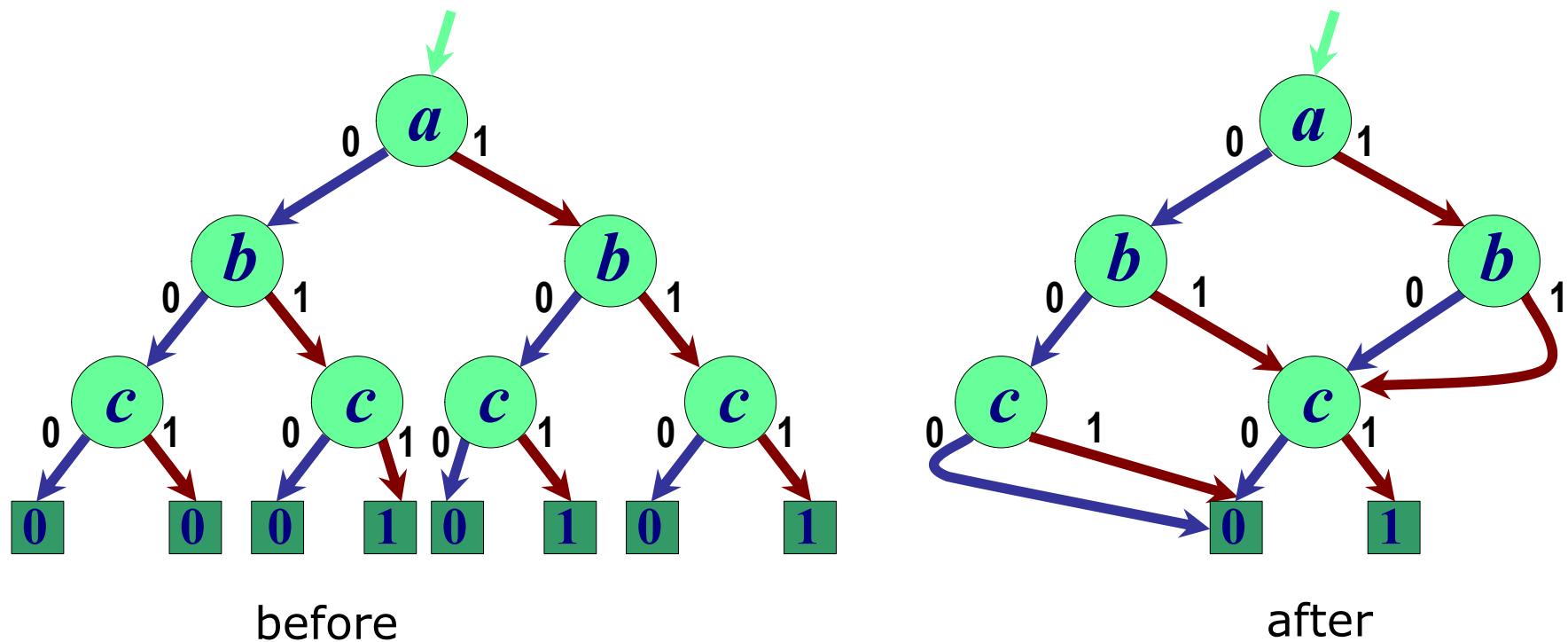


2nd idea: Reduced OBDD (ROBDD)

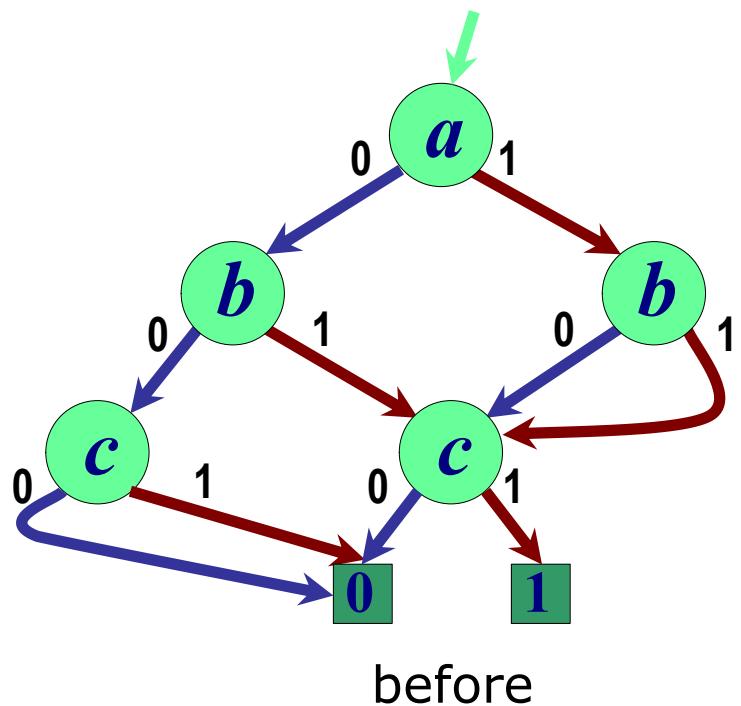
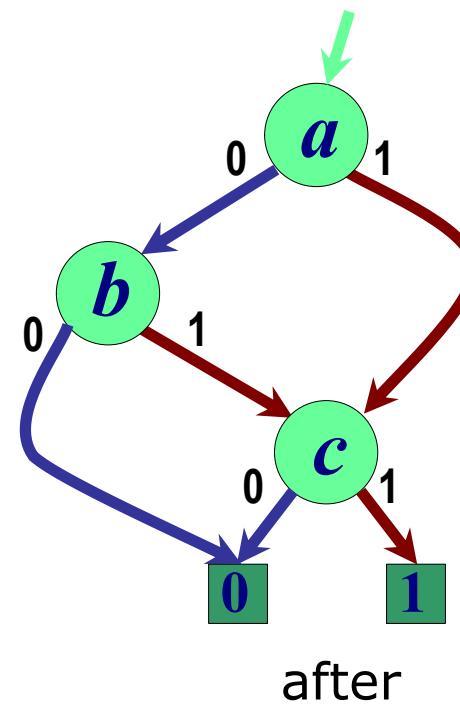
- ◆ Two reduction rules:
 1. Merge equivalent sub-trees
 2. Remove nodes with identical children



1. Merge equivalent sub-trees

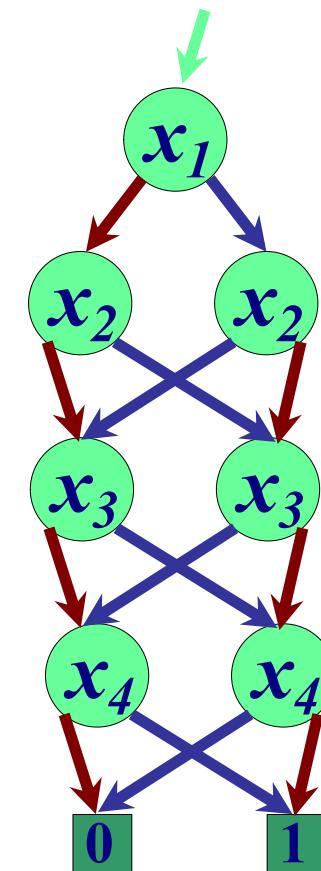


2. Remove node with identical children



ROBDDs

- ◆ ROBDDs are canonical
 - ▲ For a given variable order
- ◆ ROBDD are more compact than other canonical forms
 - ▲ Efficient representation
- ◆ ROBDD size depends on the variable order
 - ▲ Many useful functions have linear-space (or slightly above) representation



$$F = x_1 \oplus x_2 \oplus x_3 \oplus x_4$$

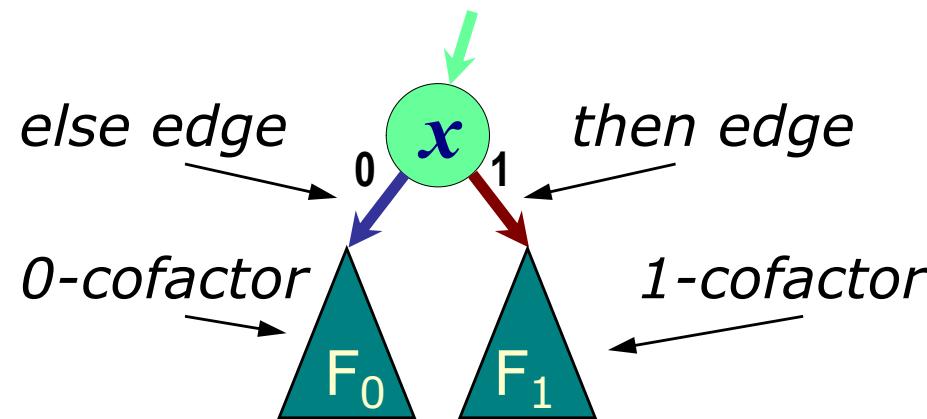
BDD semantics

Constant nodes

0

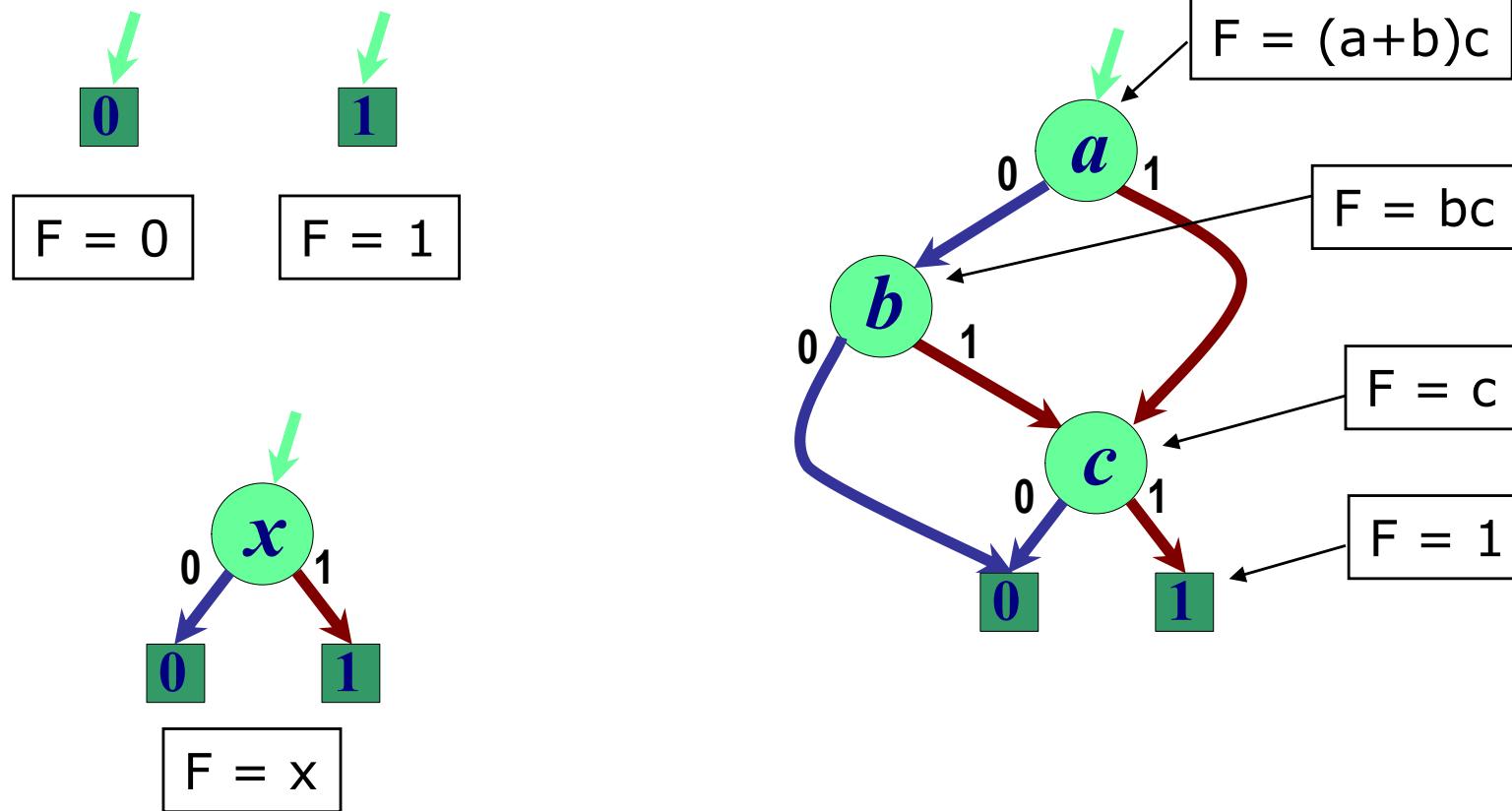
1

ITE(x, F_1, F_0)

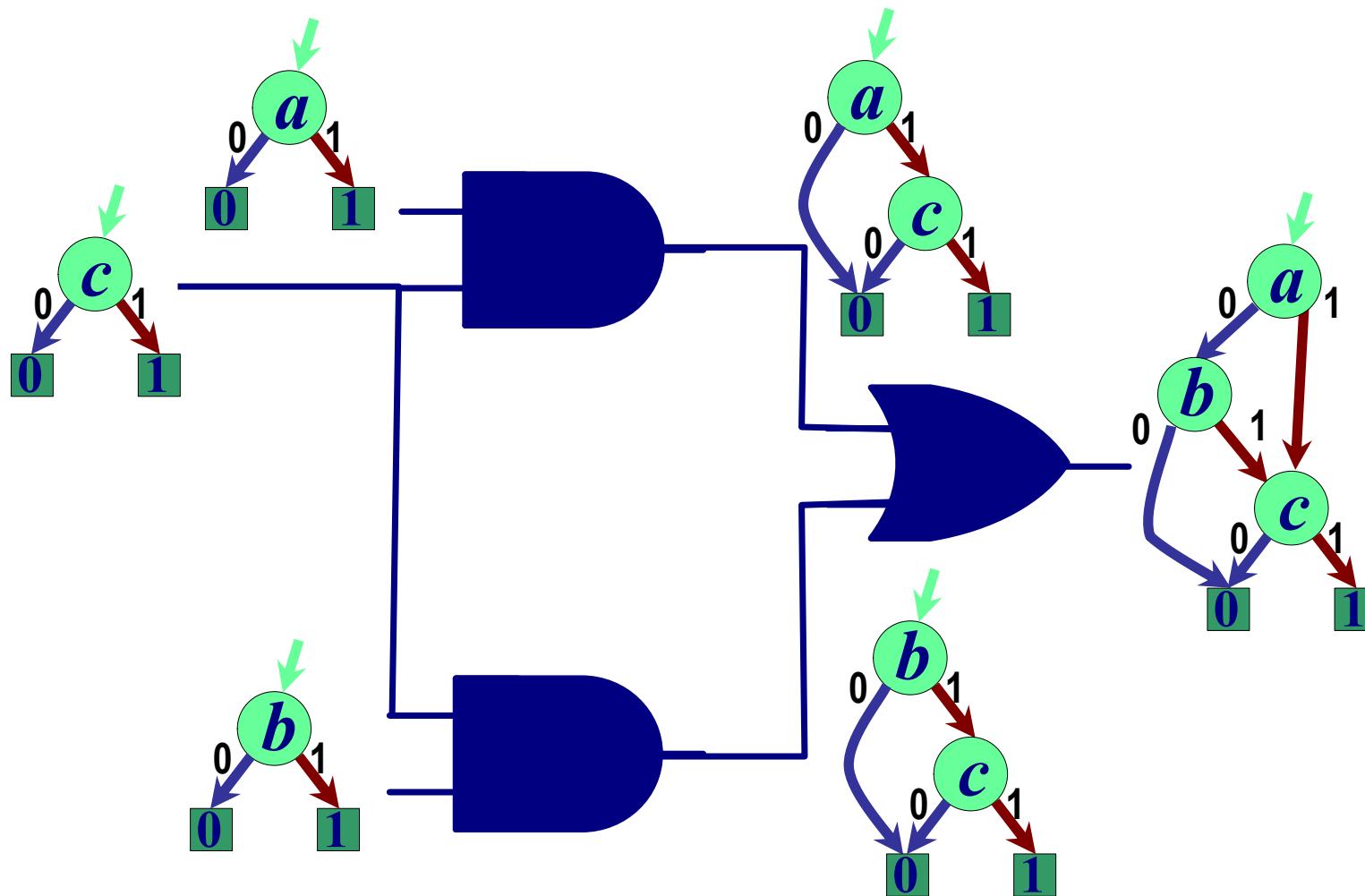


Cofactor(F, x): the function you obtain when you substitute 1 for x in F

A few simple functions



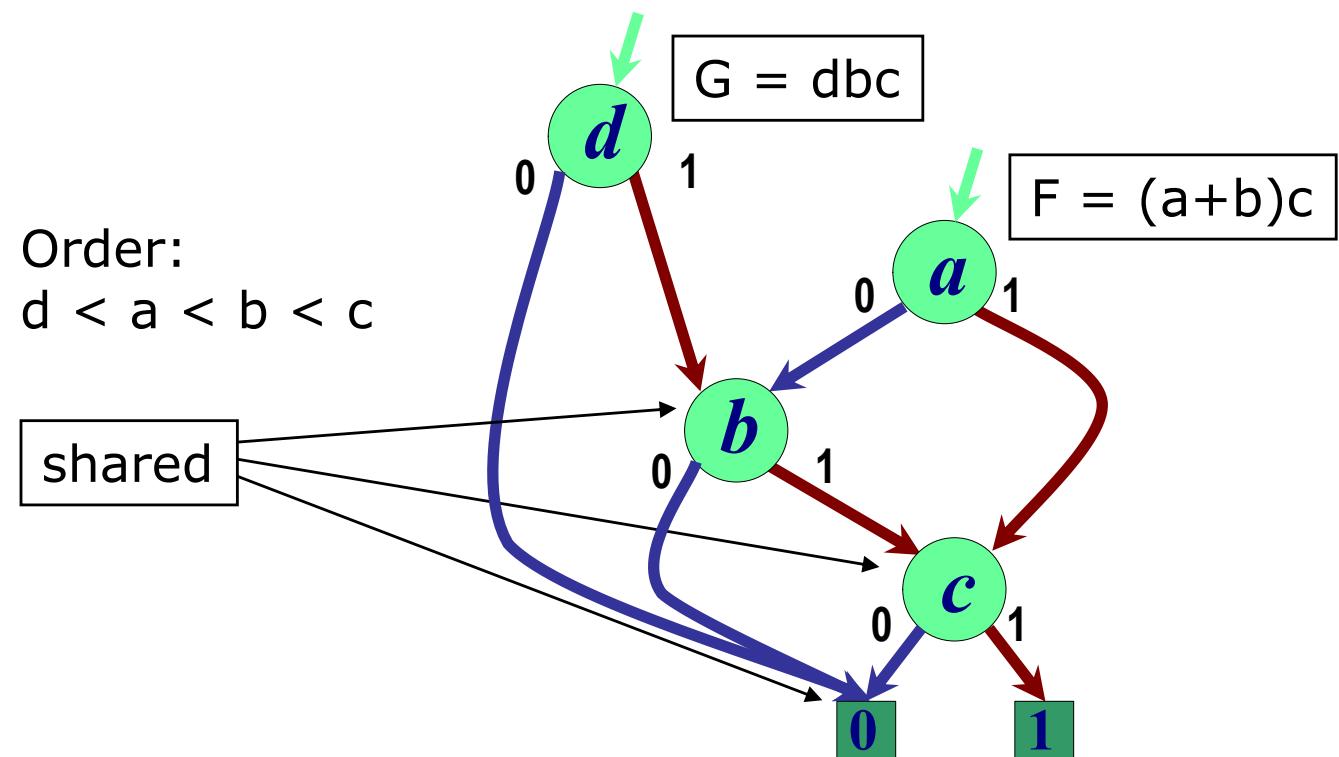
A network example



ROBDD- sharing

We already share subtrees within a ROBDD

...but we can share also among multiple ROBDDS



ROBDDs- why do we care ?

- ◆ Easy to solve some important problems:

1. Tautology checking

Just check if BDD is identical to function

1

2. Identity checking: $F = G$

3. Satisfiability

Look for a path from root to leaf 1

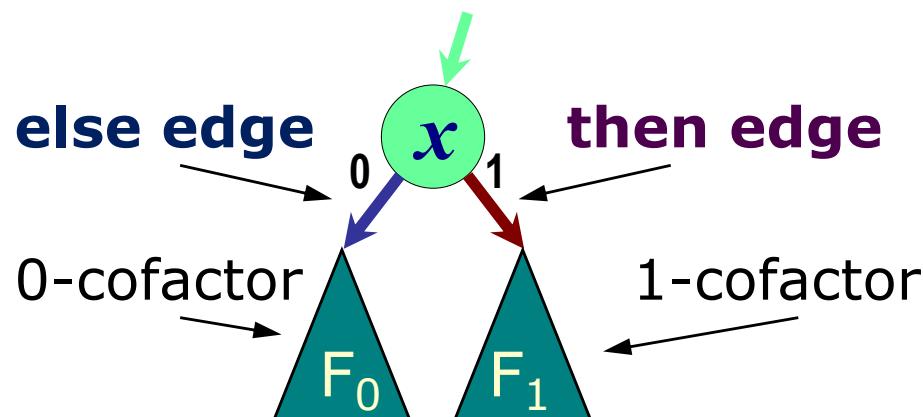
- ◆ All while having a compact representation

- ▲ Use small memory footprint

Logic operations with ROBDDs

1. Cofactor

- ▲ Given: ROBDD for G
- ▲ Positive co-factor G_x wrt. x : restrict G to $x = 1$
Remove every node with label x , redirect incoming edges to node with then edge
- ▲ Negative co-factor G_x , wrt. x : restrict G to $x = 0$
Remove every node with label x , redirect incoming edges to node with else edge



Logic operations with ROBDDs

2. Boolean operators $\star (\cdot, +, \oplus, \dots)$

▲ Given: two ROBDD for G, H

▲ Find: the ROBDD of $G \star H$

▲ **ite** operator:

▼ $\text{ite}(f,g,h) = fg + f'h$

▼ If (f) then (g) else (h)

▲ Recursive paradigm

▼ Exploit the generalized expansion of G and H

$$\text{ite}(f,g,h) = \text{ite}(x, \text{ite}(f_x, g_x, h_x), \text{ite}(f_{x'}, g_{x'}, h_{x'}))$$

Example

- ◆ Apply **AND** to two ROBDDs: f, g
 - ▲ $f \cdot g = \text{ite}(f, g, 0)$
- ◆ Apply **OR** to two ROBDDs: f, g
 - ▲ $f + g = \text{ite}(f, 1, g)$
- ◆ Similar for other Boolean operators

Boolean operators

<i>Operator</i>	<i>Equivalent ite form</i>
0	0
$f \cdot g$	$\text{ite}(f, g, 0)$
$f \cdot g'$	$\text{ite}(f, g', 0)$
f	f
$f'g$	$\text{ite}(f, 0, g)$
g	g
$f \oplus g$	$\text{ite}(f, g', g)$
$f + g$	$\text{ite}(f, 1, g)$
$(f + g)'$	$\text{ite}(f, 0, g')$
$f \overline{\oplus} g$	$\text{ite}(f, g, g')$
g'	$\text{ite}(g, 0, 1)$
$f + g'$	$\text{ite}(f, 1, g')$
f'	$\text{ite}(f, 0, 1)$
$f' + g$	$\text{ite}(f, g, 1)$
$(f \cdot g)'$	$\text{ite}(f, g', 1)$
1	1

ROBDD construction – terminal cases (AND)

- ◆ Consider a simple example: compute **AND** of two ROBDDs
- ◆ Terminal cases:
 - ▲ $\text{AND } (0, H) = 0$
 - ▲ $\text{AND } (1, H) = H$
 - ▲ $\text{AND } (G, 0) = 0$
 - ▲ $\text{AND } (G, 1) = G$

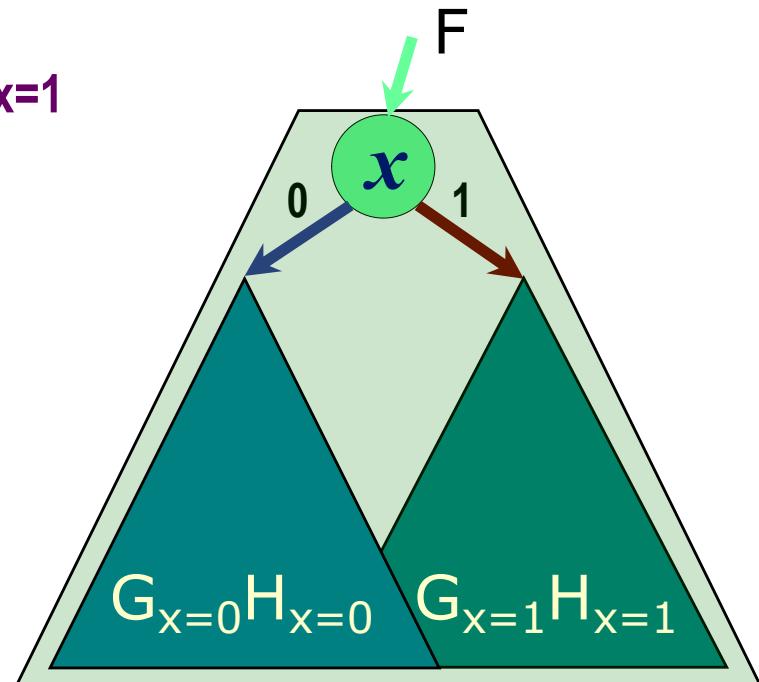
ROBDD construction – recursive step (AND)

$$\diamond G(x, \dots) = x' G_{x=0} + x G_{x=1}$$

$$\diamond H(x, \dots) = x' H_{x=0} + x H_{x=1}$$

$$\diamond F = GH = x' G_{x=0} H_{x=0} + x G_{x=1} H_{x=1}$$

Now we have reduced the problem to computing 2 ANDs of smaller functions



One last problem

- ◆ Suppose we have computed $G_{x=0} H_{x=0}$ and $G_{x=1} H_{x=1}$
- ◆ We need to construct a new node,
 - ▲ label: x
 - ▲ 0-cofactor($F_{x=0}$): ROBDD of $G_{x=0} H_{x=0}$
 - ▲ 1-cofactor($F_{x=1}$): ROBDD of $G_{x=1} H_{x=1}$
- ◆ BUT, we need first to make sure that we don't violate the reduction rules!

The unique table

To obey reduction rule #1:

- ▲ If $F_{x=0} == F_{x=1}$, the result is just $F_{x=0}$

To obey reduction rule #2:

- ▲ We keep a *unique table* of all the BDD nodes and check first if there is already a node
 $(x, F_{x=0}, F_{x=1})$

Otherwise, we build the new node

- ▲ And add it to the unique table

Putting all together

```
AND(G,H) {
    if (G==0) || (H==0) return 0;
    if (G==1) return H;
    if (H==1) return G;

    x = top_variable(G,H);
    G1 = G.then; H1 = H.then;
    G0 = G.else; H0 = H.else;
    F0 = AND(G0,H0);
    F1 = AND(G1,H1);
    if (F0 == F1) return F0;
    F = find_or_add_unique_table(x,F0,F1);

    return F;
}
```

Generalizing to Boolean operators

```
ITE(F,G,H) {  
  
    if (terminal case) return (r = trivial result);  
    cmp = computed_table_lookup(G,H);  
    if (cmp != NULL) return (r = cmp);  
  
    x = top_variable(F,G,H);  
    t = ITE (Fx , Gx , Hx )  
    e = ITE (Fx' , Gx' , Hx' )  
  
    if (t == e) return (r = t);  
    r = find_or_add_unique_table(x,t,e);  
    computed_table_insert{(F,G,H),r};  
    return ( r );  
}
```

Logic operations - summary

- ◆ **Recursive routines** – traverse the DAGs depth first
- ◆ **Two tables:**
 - ▲ **Unique table** – hash table with an entry for each BDD node
 - ▲ **Computed table** – store previously-computed partial results
- ◆ **Time complexity is quadratic in the BDD sizes**

Some algorithmic complexities

▲ Checking tautology	K time
▲ Checking identity	K time
▲ Satisfiability	linear (#vars)
▲ Binary operators: AND, OR	quadratic
▲ Smoothing, Consensus	quadratic

Motivation - again

- ◆ Why are ROBDD popular?

- ▲ Several intractable problems can be solved in polynomial time
 - ▼ Of the BDD size
 - ▲ In several cases, the BDD sizes grow mildly with the problem size
 - ▼ Variables

- ◆ This does not mean that BDD solve intractable problems in polynomial time

- ▲ Few counterexamples exists

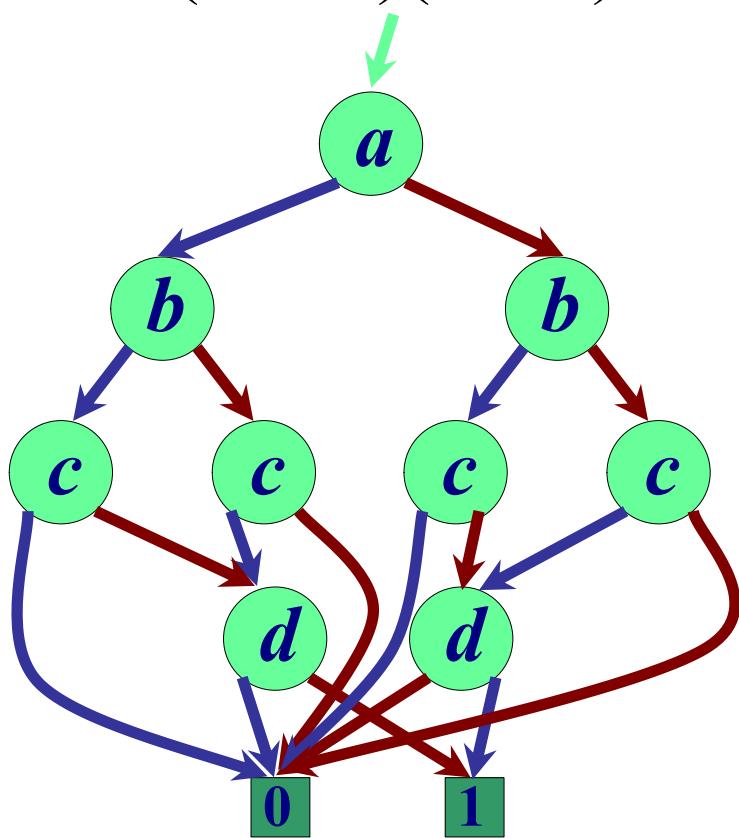
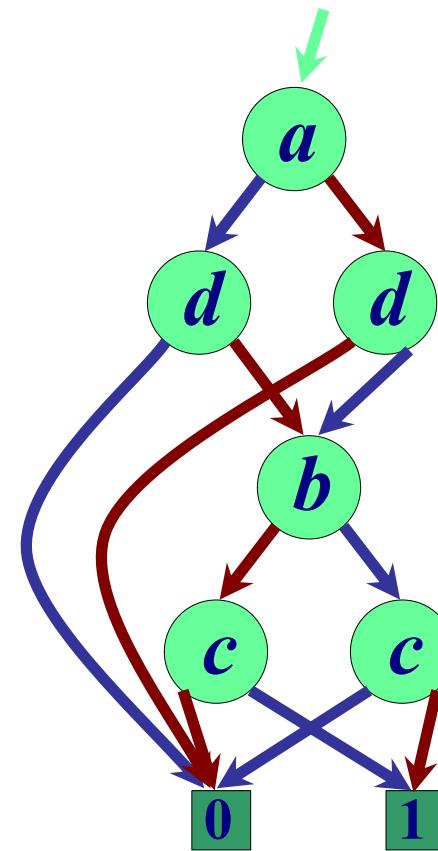
Module 2

◆ Objectives:

- ▲ Variable ordering (static and dynamic)
- ▲ Other diagrams and applications

The importance of variable order

$$F = (a \oplus d)(b \oplus c)$$



Ordering results

<i>Function type</i>	<i>Best order</i>	<i>Worst order</i>
addition	linear	exponential
symmetric	linear	quadratic
multiplication	exponential	exponential

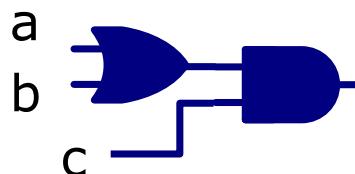
- ▲ **In practice:**
 - ▼ Many common functions have reasonable size
 - ▼ Can build ROBDDs with millions of nodes
 - ▼ Algorithms to find good variables ordering

Variable ordering algorithms

- ◆ ***Problem:*** given a function F , find the variable order that minimizes the size of its ROBBDs
- ◆ ***Answer:*** problem is intractable
- ◆ Two heuristics
 - ▲ **Static variable ordering (1988)**
 - ▲ **Dynamic variable ordering (1993)**

Static variable ordering

- ◆ Variables are ordered based on the network topology
 - ▲ *How*: put at the bottom the variables that are closer to circuit's outputs
 - ▲ *Why*: because those variables only affect a small part of the circuit



good order: $a < b < c$

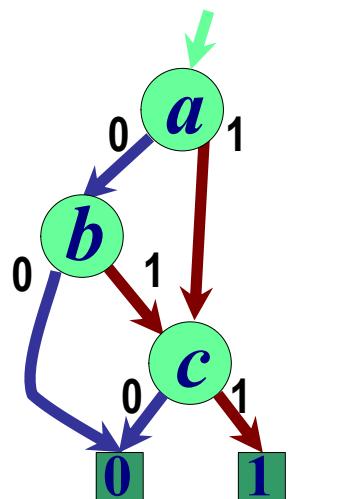
- ▲ *Disclaimer*: it is a heuristic, results are not guaranteed

Dynamic variable ordering

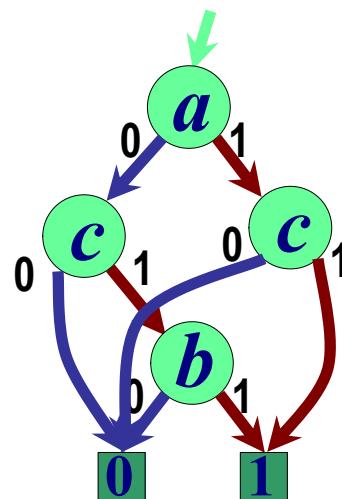
- ◆ Changes the variable order on the fly whenever ROBDDs become too big
- ◆ *How: trial and error – sifting algorithm*
 1. Choose a variable
 2. Move it in all possible positions of the variable order
 3. Pick the position that leaves you with the smallest ROBDDs
 4. Choose another variable ...

Dynamic variable ordering

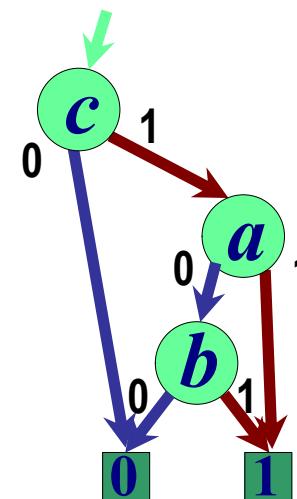
- ◆ Tiny example: $F=(a+b)c$
 - ▲ We want to find the optimal position for variable **c**



initial order:
 $a < b < c$



Swap (**b**, **c**):
 $a < c < b$



Swap (**a**, **c**):
 $c < a < b$

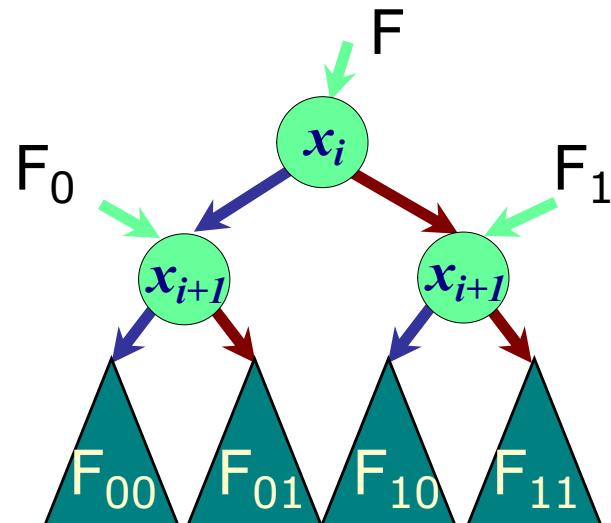
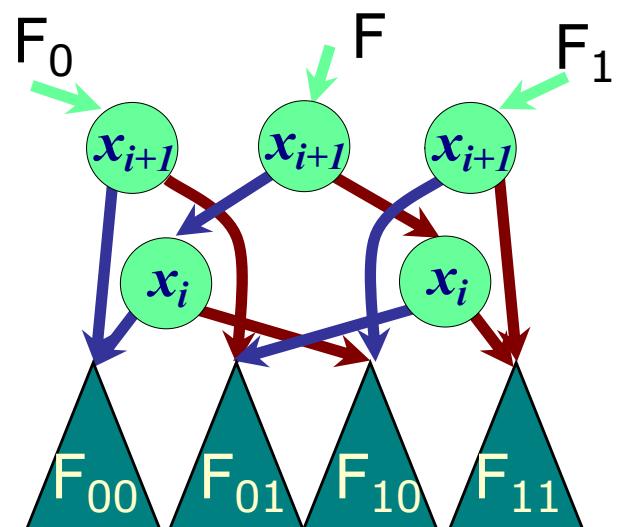
Final order:
 $c < a < b$

Variable swapping

$$ITE(x_i, F_1, F_0) =$$

$$= ITE(x_i, ITE(x_{i+1}, F_{11}, F_{10}), ITE(x_{i+1}, F_{01}, F_{00}))$$

$$= ITE(x_{i+1}, ITE(x_i, F_{11}, F_{01}), ITE(x_i, F_{10}, F_{00}))$$



Dynamic variable ordering

◆ **Key idea:** swapping two variables can be done locally

▲ **Efficient:**

- ▼ It can be done just by sweeping the unique table

▲ **Robust:**

- ▼ It works well on many more circuits

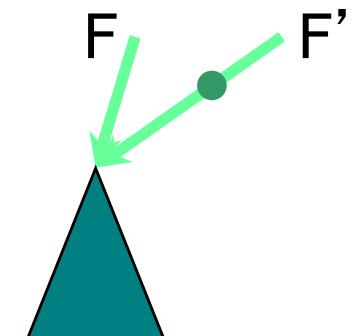
▲ **Warning:**

- ▼ It is still non optimal

- ▼ At convergence, you most probably have found only a local minimum

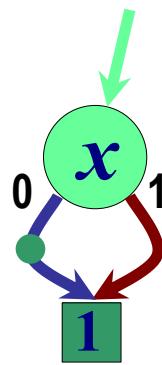
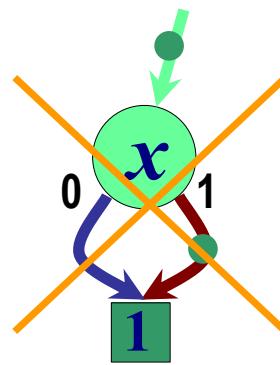
Improvements on BDDs

- ◆ Complement edges (1990)
 - ▲ Creates more opportunities for sharing
 - ▼ Fewer nodes
 - ▲ For every pair (F, F') , we
 - ▼ Only construct the ROBDD for F
 - ▼ F' is given by using a complement edge to F
 - ▲ Which do you pick ?
 - ▼ THEN edge can never be complemented
 - ▼ Only constant value 1



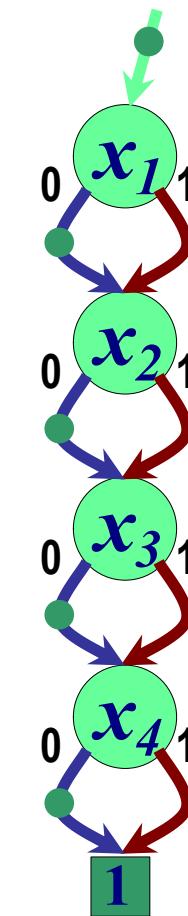
Complement edges

◆ $F = x$



$$F = x_1 \oplus x_2 \oplus x_3 \oplus x_4$$

◆ Still canonical



Other types of Decision Diagram

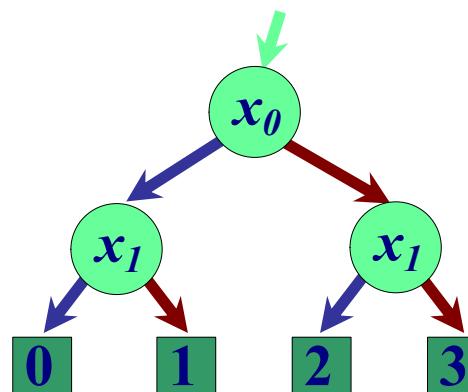
- ◆ Based on different expansion

- ▲ OFDD
- ▲ Ordered functional decision diagrams

$$F = F_{x=0} \oplus x(F_{x=0} \oplus F_{x=1})$$

- ◆ For discrete functions:

- ▲ ADD
- ▲ Algebraic decision diagrams



Boolean functions and sets of combinations

a	b	c	F
0	0	0	0
1	0	0	0
0	1	0	0
1	1	0	1
0	0	1	1
1	0	1	1
0	1	1	0
1	1	1	0

Boolean function:

$$F = (a \ b \ \sim c) \vee (\sim b \ c)$$

Set of combinations:

$$F = \{ab, ac, c\}$$

(customer's choice)

→ ab

- Operations of combinatorial itemsets can be done by BDD-based logic operations.

→ c

- Union of sets → logical OR

- Intersection of sets → logical AND

- Complement set → logical NOT

→ ac

ZDDs -- Zero-suppressed BDDs

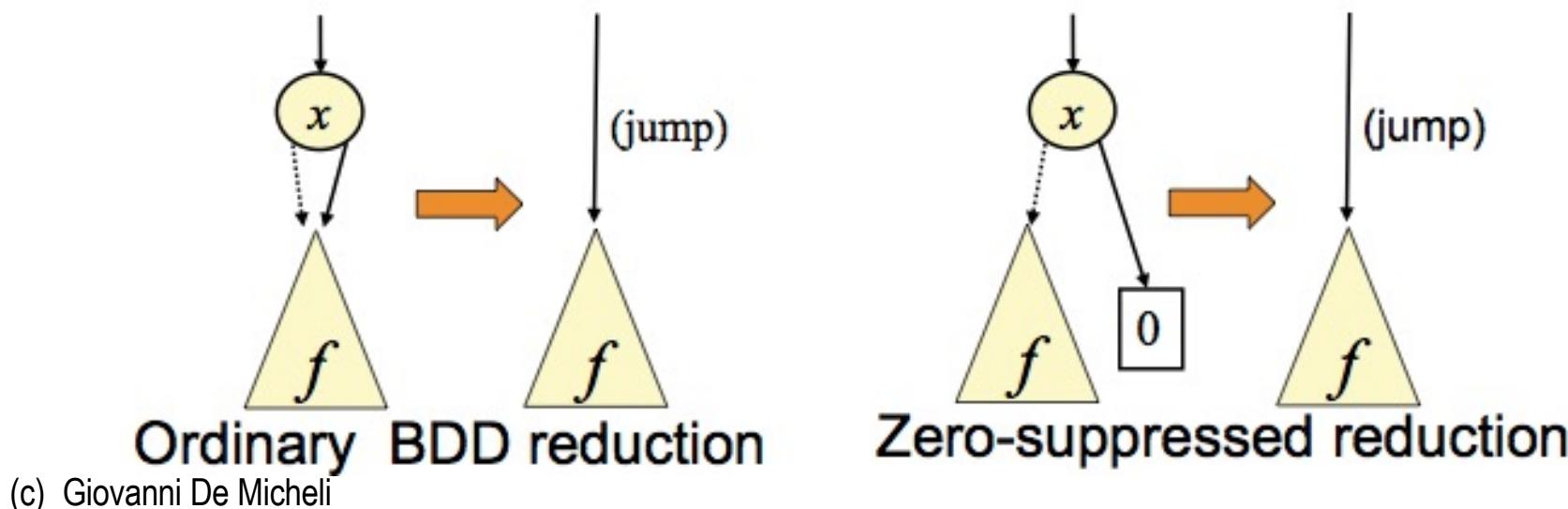
- ◆ BDDs with different reduction rules

- ▲ Eliminate all nodes whose 1-edge points to the 0-leaf and redirect incoming edges to the 0-subgraph

- ▲ Share all equivalent subgraphs

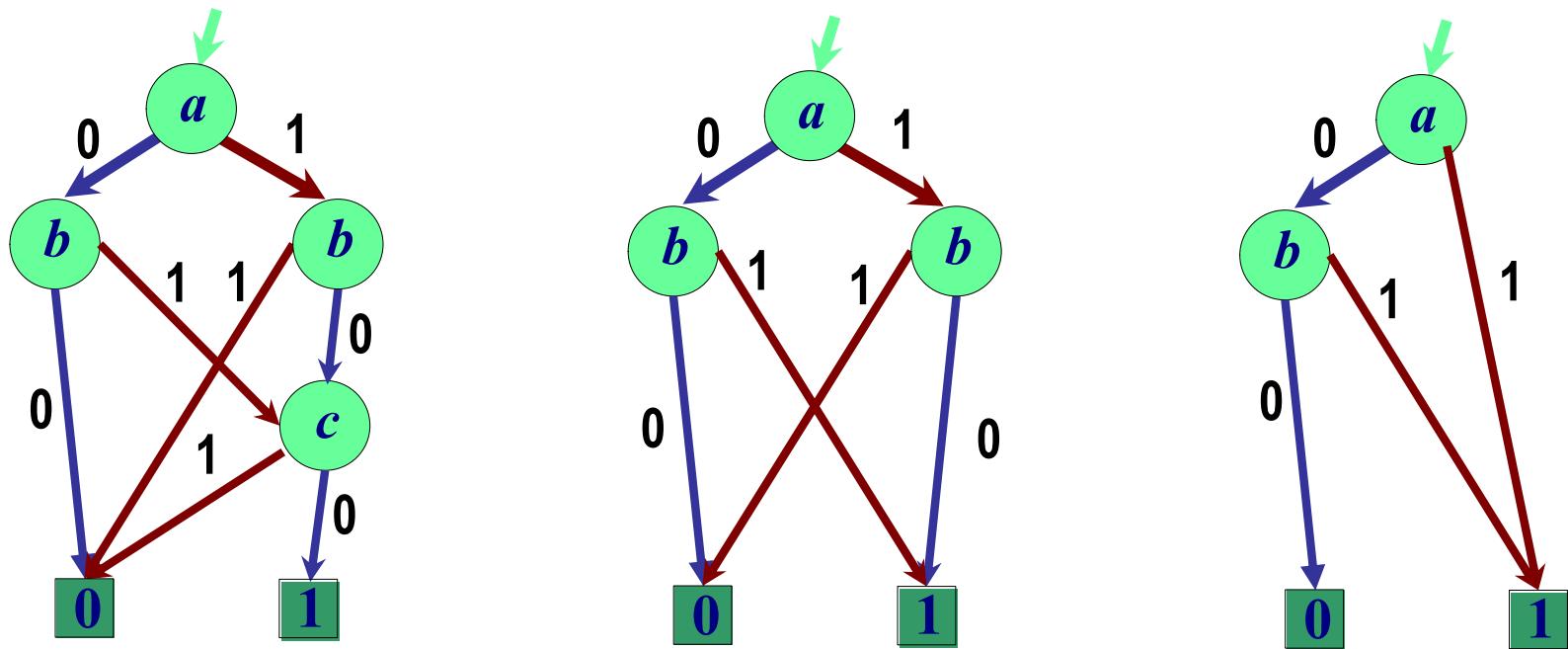
- ◆ If item x does not appear in any itemset, the ZDD node is eliminated

- ▲ When average occurrence ratio of each item is 1%, than ZDD are more efficient than BDDs (up to 100 times)



ZDD - example

- ◆ Itemset $\{a, b\}$; characteristic function $F = ab'c' + a'b'c'$



Eliminate all nodes whose 1-edge points to the 0-leaf and redirect incoming edges to the 0-subgraph

Summary

◆ BDDs

- + Very efficient data structure
- + Efficient manipulation routines
- A few important functions don't come out well
- Variable order can have a high impact on size

◆ Application in many areas of CAD

- ▲ Hardware verification
- ▲ Logic synthesis