Binary Decision Diagrams

Giovanni De Micheli
Integrated Systems Laboratory

m
T
"1
—

LSI

Integrated Systems Laboratory

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli - All rights reserved

Module 1

¢ Objectives:
A Definitions of BDDs, OBDDs and ROBDDs

ALogic operations on BDDs

AThe ITE operator

(c) Giovanni De Micheli

2020 US election — while counting one day after

2020
Number of Paths
To the Presidency
Q Pennsylvania
Joe Biden
27
84% of paths Georgia

Donald Trump

4 Q N. Carolina

13% of paths
1 tie (3%) Q Q Q Arizona
© o <o Nevada

(c) Giovanni De Micheli 3

Motivation

¢ Efficient way to represent logic functions

¢ History

A Original idea for BDD due to Lee (1959) and Akers (1978)

A Refined, formalized and popularized by Bryant (1986)

v Smaller memory footprint

v Canonical form - each distinct function correspond to a unique distinct
diagram

(c) Giovanni De Micheli

Canonical forms - review

¢ Each logic function has a unique representation

¢ Truth table

_ e - -, O O O O

_ e OO - -0 O T
_ O =) OO = O - O
_ O) O OO0 OmMm

. a’ bc+ab’ c+abc
¢ Sum of minterms

(c) Giovanni De Micheli

Non canonical forms - review

Each function has also multiple representations

Factored form (a+b)c Sctbe

¢ Logic network representation

E:’_—_._ »-

C—

(c) Giovanni De Micheli 8

Terminology

¢ A Binary Decision Diagram (BDD) is a directed acyclic graph
A Graph: set of vertices connected by edges

ADirected: edges have direction

AAcyclic: no path in the graph can lead to a cycle

¢ Often abbreviated as DAG

A Simplest model:

v Two leaves (Boolean constants 0 and 1)
v One root
v Can degenerate to a tree

(c) Giovanni De Micheli

eF=(ath)c
a b c|F
0 0 00
0 0 110
0 1 00
0 1 1|1
1 0 010
1 0 1 |1
1 1 010
1 1 11

(c) Giovanni De Micheli

WN =

BDD - Example

. Each vertex represents a decision on a variable
. The value of the function is found at the leaves
. Each path from root to leaf corresponds to a

row in the truth table

10

BDD - observations

¢ The size of a BDD is as big as a truth table:

A1 leaf per row

A Exponential size

¢ Each path from root to leaf evaluates variables in some order

- But the order is not fixed:
- (a,b,c) and (a,c,b)
- Free BDD

(c) Giovanni De Micheli

1stidea: Ordered BDD (OBDD)

¢ Choose arbitrary total ordering on the variables

A Variables must appear in the same order along each path from
root to leaves

A Each variable can appear at most once on a path

example:
a<b<c

(c) Giovanni De Micheli 12

2"d jdea: Reduced OBDD (ROBDD)

¢ Two reduction rules:

1. Merge equivalent sub-trees

2. Remove nodes with identical children

(c) Giovanni De Micheli

13

1. Merge equivalent sub-trees

before after

(c) Giovanni De Micheli

14

2. Remove node with identical children

before

(c) Giovanni De Micheli

15

ROBDDs

& ROBDDs are canonical

A For a given variable order

¢ ROBDD are more compact than other
canonical forms

A Efficient representation

¢ ROBDD size depends on the variable order

A Many useful functions have linear-space
(or slightly above) representation

(c) Giovanni De Micheli

16

BDD semantics

Constant nodes

ITE(X,F1,FO)
0 1
else edge then edge
O-cofactor 1-cofactor
=7 Pl

Cofactor(F,x): the function you obtain when you substitute 1 for x in F

(c) Giovanni De Micheli 17

A few simple functions

/ F = (a+b)C

(c) Giovanni De Micheli

18

A network example

(c) Giovanni De Micheli

19

ROBDD- sharing

We already share subtrees within a ROBDD

...but we can share also among multiple ROBDDS

F = (a+b)c

(c) Giovanni De Micheli 20

ROBDDs- why do we care ?

¢ Easy to solve some important problems:

1. Tautology checking
Just check if BDD is identical to function

2. Identity checking: F =G

3. Satisfiability
Look for a path from root to leaf 1

¢ All while having a compact representation
A Use small memory footprint

(c) Giovanni De Micheli

21

Logic operations with ROBDDs

Cofactor
A Given: ROBDD for G

A Positive co-factor G, wrt. x: restrict Gtox = 1
Remove every node with label x, redirect incoming edges to node with then edge

A Negative co-factor G,, wrt. x: restrict Gtox = 0
Remove every node with label x, redirect incoming edges to node with else edge

else edge then edge
O-cofactor 1-cofactor
g Palhas

(c) Giovanni De Micheli 22

2.

Logic operations with ROBDDs

Boolean operators * (-, +, &, ...)

A Given: two ROBDD for G, H
AFind: the ROBDD of G x H

Aite operator:
v ite(f,g,h) =fg + fh
v If (f) then (g) else (h)

ARecursive paradigm

v Exploit the generalized expansion of G and H
ite (f,g,h) = ite(x,ite(f,,9,,h,).ite(f,, g, ,h,’))

(c) Giovanni De Micheli

23

Example

¢ Apply AND to two ROBDDs: f,g
Afg =ite (f,g,0)

¢ Apply OR to two ROBDDs: f,g
Af+g =ite (f,1,9)

¢ Similar for other Boolean operators

(c) Giovanni De Micheli

24

(c) Giovanni De Micheli

Boolean operators

0

k“-'\h
\H\ - --
Q Q @

Bl+ + P’
o @ Y
~

a 7~
. ’N‘_ . "\ﬁ_'
. +r'-\
\h_ \‘
\fQ'
-~ "Q'(

%
+
Sw)

-

(f-9)

Operator | Equivalent ite form

0
ite(f,qg.0)
ite(f,g',0)

f
ite(f,0,9)

g
ite(f, 9, 9)
ite(f,1,9)
ite(f,0,9")
l[f(f* gsgl)
ite(g.0,1)
ite(f,1,9)
ite(f.0,1)
ite(f,g,1)
ite(f,g',1)

1

25

ROBDD construction - terminal cases (AND)

¢ Consider a simple example: compute AND of two ROBDDs

¢ Terminal cases:
AAND (0,H)=0
AAND (1,H) =H
AAND (G,0)=0
AAND (G,1)=G

(c) Giovanni De Micheli 26

ROBDD construction - recursive step (AND)
¢ G(X,...) =X’ G,o* x G,

& H(x,...) =X H,o+ X H,_,

‘ F = GH = X’ Gx=0 Hx=0 + X Gx=1 Hx=1

Now we have reduced the

problem to computing 2
ANDs of smaller functions

(c) Giovanni De Micheli

27

One last problem

¢ Suppose we have computed
Gy Hypand G,-4H,-;

¢ We need to construct a new node,
A label: x
A 0-cofactor(F,-y): ROBDD of G,_,H,-
A 1-cofactor(F,-,): ROBDD of G,_, H,-;

¢ BUT, we need first to make sure that we don’ t violate the
reduction rules!

(c) Giovanni De Micheli 28

The unique table

To obey reduction rule #1:
A IfF,.,==F,., the resultis just F,.,

To obey reduction rule #2:

A We keep a unique table of all the BDD nodes and check first if
there is already a node

(X, I:x=0! I:x=1)

Otherwise, we build the new node
A And add it to the unique table

(c) Giovanni De Micheli 29

Putting all together

AND(G,H) {
if (G==0) || (H==0) return O;
if (G==1) return H;
if (H==1) return G;

G.then; H1 = H.then;

G.else; HO = H.else;

FO = AND(GO,HO0);

F1 = AND(G1,H1);

if (FO == F1) return FO;

F = find_or_add_unique_table(x,FO,F1);

x = top_variable(G,H);
Gl =
GO =

return F;

(c) Giovanni De Micheli

30

Generalizing to Boolean operators

ITE(F,G,H) {

if (terminal case) return (r = trivial result);
cmp = computed_table_lookup(G,H);
if (cmp !'= NULL) return (r = cmp);

x = top_variable(F,G,H);
t =ITE(FXIGXIHX)
e =ITE (Fy, Gy, Hy)

if (t == e) return (r = t);

r = find_or_add_unique_table(x,t,e);
computed_table_insert{(F,G,H),r};
return (r);

(c) Giovanni De Micheli

31

Logic operations - summary

¢ Recursive routines - traverse the DAGs depth first

¢ Two tables:
A Unique table — hash table with an entry for each BDD node

A Computed table - store previously-computed partial results

¢ Time complexity is quadratic in the BDD sizes

(c) Giovanni De Micheli 32

Some algorithmic complexities

A Checking tautology K time
A Checking identity K time
A Satisfiability linear (#vars)

ABinary operators: AND, OR quadratic

A Smoothing, Consensus quadratic

(c) Giovanni De Micheli

Motivation - again

¢ Why are ROBDD popular?

A Several intractable problems can be solved in polynomial time
v Of the BDD size

Aln several cases, the BDD sizes grow mildly with the problem size

v Variables

¢ This does not mean that BDD solve intractable problems in
polynomial time

A Few counterexamples exists

(c) Giovanni De Micheli 34

Module 2

¢ Objectives:

A Variable ordering (static and dynamic)

A Other diagrams and applications

(c) Giovanni De Micheli

35

The importance of variable order

F=@®d)b®c)

(c) Giovanni De Micheli

36

Ordering results

Function type Best order Worst order
addition linear exponential
symmetric linear quadratic

multiplication exponential exponential

A In practice:

v Many common functions have reasonable size
v Can build ROBDDs with millions of nodes
v Algorithms to find good variables ordering

(c) Giovanni De Micheli

37

Variable ordering algorithms

¢ Problem: given a function F, find the variable order
that minimizes the size of its ROBBDs

¢ Answer: problem is intractable

¢ Two heuristics
A Static variable ordering (1988)

A Dynamic variable ordering (1993)

(c) Giovanni De Micheli

38

Static variable ordering

¢ Variables are ordered based on the network topology

A How: put at the bottom the variables that are closer to circuit’ s
outputs

A Why: because those variables only affect a small part of the
circuit

d

b :’_—_.. good order: a < b < C
C

A Disclaimer: it is a heuristic, results are not guaranteed

(c) Giovanni De Micheli 39

Dynamic variable ordering

¢ Changes the variable order on the fly whenever
ROBDDs hecome too big

¢ How: trial and error - sifting algorithm

1. Choose a variable

2. Move it in all possible positions of the variable order

3. Pick the position that leaves you with the smallest ROBDDs
4. Choose another variable ...

(c) Giovanni De Micheli

40

Dynamic variable ordering

¢ Tiny example: F=(atb)c

A We want to find the optimal position for variable ¢

initial order: Swap (b, ¢): Swap (a, ¢):
a<b<c a<c<b c<a<b

(c) Giovanni De Micheli

Final order:
c<a<b

41

Variable swapping

ITE(x,,F,F)) =
_[TE(X ITE(X e 119 10) [TE(X+19 01° 00))
= ITE(x, ITE(x ,F ,F), ITE(x ,F,F,))

(c) Giovanni De Micheli

42

Dynamic variable ordering

¢ Key idea: swapping two variables can be done locally

AEfficient:
v It can be done just by sweeping the unique table

ARobust:
v It works well on many more circuits
AWarning:

v It is still non optimal
v At convergence, you most probably have found only a local minimum

(c) Giovanni De Micheli 43

Improvements on BDDs

¢ Complement edges (1990)

A Creates more opportunities for sharing
v Fewer nodes

A For every pair (F,F’), we
v Only construct the ROBDD for F
v F’ is given by using a complement edge to F

A Which do you pick ?

v THEN edge can never be complemented
v Only constant value [}

(c) Giovanni De Micheli

44

Complement edges

oF=x o
& 8

N~

1 1

F=x®x ®x, Dx,

¢ Still canonical

(c) Giovanni De Micheli

45

Other types of Decision Diagram

¢ Based on different expansion
A OFDD
A Ordered functional decision diagrams

F=F ®x(F_®F_)
¢ For discrete functions:

A ADD @

A Algebraic decision diagrams @
0 [1] [2] 73]

(c) Giovanni De Micheli 46

Boolean functions and sets of combinations

Boolean function:

abic|F F=@b~c)V (~bc)
0[{0|0]|0 gm e

Set of combinations: B R e
11000 F = {ab, ac, c} ‘esto&(noi tomatoes)
ol110!0 \ T , Wef.'are/ about whatthe
1/1/0|1|>gh (customer’s choice) o
0(0/1| 1|2 ¢ = Operations of combinatorial itemsets
1lol1l 1> a canbe done by BDD-based logic

operations.

0/1{1/0 = Union of sets - logical OR
1111110 = Intersection of sets - logical AND

= Complement set - logical NOT

(c) Giovanni De Micheli 47

ZDDs -- Zero-suppressed BDDs

& BDDs with different reduction rules

A Eliminate all nodes whose 1-edge points to the 0-leaf and redirect incoming
edges to the 0-subgraph

A Share all equivalent subgraphs

¢ If item x does not appear in any itemset, the ZDD node is eliminated

A When average occurrence ratio of each item is 1%, than ZDD are more efficient
than BDDs (up to 100 times)

(Jump)

) |

/\

./’/f\ \ L / f\ 1/ \\

Ordinary BDD reduction Zero-suppressed reduction
(c) Giovanni De Micheli 48

ZDD - example

¢ Itemset {a,b}; characteristic function F = ab’c’ + a’bc’

Eliminate all nodes whose 1-edge points to the 0-leaf and redirect
incoming edges to the 0-subgraph

(c) Giovanni De Micheli 49

Summary

¢ BDDs

+ Very efficient data structure
+ Efficient manipulation routines

- A few important functions don’ t come out well
- Variable order can have a high impact on size

¢ Application in many areas of CAD
A Hardware verification
A Logic synthesis

(c) Giovanni De Micheli

51

