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Module 1

!Objectives:
!Definitions of BDDs, OBDDs and ROBDDs
!Logic operations on BDDs
!The ITE operator



2020 US election – while counting one day after
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Motivation

! Efficient way to represent logic functions

! History
!Original idea for BDD due to Lee (1959) and Akers (1978)
!Refined, formalized and popularized by Bryant (1986)

! Smaller memory footprint
! Canonical form – each distinct function correspond to a unique distinct 

diagram
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" Each logic function has a unique representation

" Truth table

" Sum of minterms

Canonical forms - review

a b c F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

a’bc+ab’c+abc



(c)  Giovanni De Micheli 8

Non canonical forms - review

!Each function has also multiple representations

!Factored form

!Logic network representation

(a+b)c ac+bc

a
b

c

a

b

c
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Terminology

! A Binary Decision Diagram (BDD) is a directed acyclic graph

!Graph: set of vertices connected by edges
!Directed: edges have direction
!Acyclic: no path in the graph can lead to a cycle

!Often abbreviated as DAG
!Simplest model:

! Two leaves (Boolean constants 0 and 1)
! One root 
! Can degenerate to a tree
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BDD - Example

!F = (a + b) c

0 1a

00

0 1

b b

0 1

0 1

c c

cb

1100

0 1 0 10 1 0 1

a b c F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

1. Each vertex represents a decision on a variable
2. The value of the function is found at the leaves
3. Each path from root to leaf corresponds to a 

row in the truth table
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BDD - observations

!The size of a BDD is as big as a truth table: 
!1 leaf per row
!Exponential size

!Each path from root to leaf evaluates variables in some order 
- But the order is not fixed:
- (a,b,c) and (a,c,b)
- Free BDD 0 1a

00

0 1

b b
0 1

0 1

c c

cb

1100

0 1 0 10 1 0 1
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1st idea: Ordered BDD (OBDD)

!Choose arbitrary total ordering on the variables
!Variables must appear in the same order along each path from 

root to leaves
!Each variable can appear at most once on a path

0 1a

10

0 1

c c

0 1

0 1

c c

bb

1000

0 1 0 10 1 0 1

example:
a < b < c 
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2nd idea: Reduced OBDD (ROBDD)

! Two reduction rules:
1. Merge equivalent sub-trees
2. Remove nodes with identical children

0 1a

10

0 1

c c

0 1

0 1

c c

bb

1000

0 1 0 10 1 0 1
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1. Merge equivalent sub-trees

0 1a

0 10 1

c

bb

0 1 c

10

0 1

0 1a

10

0 1

c c

0 1

0 1

c c

bb

1000

0 1 0 10 1 0 1

before after
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2. Remove node with identical children

0 1a

0 10 1

c

bb

0 1 c

10

0 1

before after

0 1a

0 1b

c

10

0 1
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ROBDDs

! ROBDDs are canonical
" For a given variable order

! ROBDD are more compact than other 
canonical forms
" Efficient representation

! ROBDD size depends on the variable order
" Many useful functions have linear-space 

(or slightly above) representation

0 1

x4 x4

x3 x3

x2 x2

x1

4321 xxxxF ⊕⊕⊕=
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BDD semantics

Constant nodes

0 1

x0 1

ITE(x,F1,F0)

then edgeelse edge

0-cofactor 1-cofactor

F0 F1

Cofactor(F,x): the function you obtain when you substitute 1 for x in F 
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A few simple functions

x

10

0 1

0 1

F = 0 F = 1

F = x

0 1a

0 1b

c

10

0 1

F = c

F = (a+b)c

F = bc

F = 1
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A network example

a
10

0 1

b
10

0 1

c
10

0 1

a0 1

c
10

0 1

b0 1

c
10

0 1

0 1a

0 1b
c
10

0 1
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ROBDD- sharing

We already share subtrees within a ROBDD

…but we can share also among multiple ROBDDS

shared

0 1a

0 1b

c

10

0 1

0 1d
Order:
d < a < b < c 

G = dbc

F = (a+b)c
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ROBDDs- why do we care ?
! Easy to solve some important problems:

1. Tautology checking
Just check if BDD is identical to function 

2. Identity checking: F = G

3. Satisfiability
Look for a path from root to leaf 1

! All while having a compact representation
" Use small memory footprint

1



Logic operations with ROBDDs

1. Cofactor
!Given: ROBDD for 𝐆
!Positive co-factor 𝐆𝐱 wrt. 𝑥: restrict 𝐆 to 𝑥 = 1

Remove every node with label 𝑥, redirect incoming edges to node with then edge

!Negative co-factor 𝐆𝐱" wrt. 𝑥: restrict 𝐆 to 𝑥 = 0
Remove every node with label 𝑥, redirect incoming edges to node with else edge 

(c)  Giovanni De Micheli 22

x0 1
then edgeelse edge

0-cofactor 1-cofactor

F0 F1



Logic operations with ROBDDs

2. Boolean operators ⋆ (⋅, +, ⊕, …)
!Given: two ROBDD for 𝐆, 𝐇
!Find: the ROBDD of 𝐆 ⋆ 𝐇

! ite operator:
! ite(f,g,h) = fg + f’h
! If (f) then (g) else (h)

!Recursive paradigm
! Exploit the generalized expansion of G and H
ite (f,g,h) = ite(x,ite(fx,gx,hx),ite(fx’, gx’,hx’))
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Example

!Apply AND to two ROBDDs: f,g
! fg = ite (f,g,0)

!Apply OR to two ROBDDs: f,g
! f+g = ite (f,1,g)

!Similar for other Boolean operators
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Boolean operators
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ROBDD construction – terminal cases (AND)

!Consider a simple example: compute AND of two ROBDDs

!Terminal cases:
!AND (0,H) = 0
!AND (1,H) = H
!AND (G,0) = 0
!AND (G,1) = G
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ROBDD construction – recursive step (AND)

!G(x,…) =x’ Gx=0+ x Gx=1

!H(x,…) =x’ Hx=0+ x Hx=1

!F = GH = x’ Gx=0 Hx=0  + x Gx=1Hx=1
x0 1

F

Gx=0Hx=0 Gx=1Hx=1

Now we have reduced the 
problem to computing 2 
ANDs of smaller functions
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One last problem

! Suppose we have computed 
Gx=0 Hx=0 and  Gx=1Hx=1

! We need to construct a new node,
! label: x
! 0-cofactor(Fx=0): ROBDD of Gx=0 Hx=0 

! 1-cofactor(Fx=1): ROBDD of Gx=1 Hx=1 

! BUT, we need first to make sure that we don’t violate the 
reduction rules!
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The unique table

To obey reduction rule #1:
! If Fx=0 == Fx=1, the result is just Fx=0

To obey reduction rule #2:
! We keep a unique table of all the BDD nodes and check first if 

there is already a node 
(x, Fx=0, Fx=1)

Otherwise, we build the new node
! And add it to the unique table
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Putting all together

AND(G,H) {
if (G==0) || (H==0) return 0;
if (G==1) return H;
if (H==1) return G;
cmp = computed_table_lookup(G,H);
if (cmp != NULL) return cmp;

x = top_variable(G,H);
G1 = G.then; H1 = H.then;
G0 = G.else; H0 = H.else;
F0 = AND(G0,H0);
F1 = AND(G1,H1);
if (F0 == F1) return F0;
F = find_or_add_unique_table(x,F0,F1);
computed_table_insert(G,H,F);
return F;

}
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Generalizing to Boolean operators

ITE(F,G,H) {

if (terminal case) return (r = trivial result);
cmp = computed_table_lookup(G,H);
if (cmp != NULL) return (r = cmp);

x = top_variable(F,G,H);
t  = ITE (Fx , Gx , Hx )
e  = ITE (Fx’ , Gx’ , Hx’)

if (t == e) return (r = t);
r = find_or_add_unique_table(x,t,e);
computed_table_insert{(F,G,H),r};
return ( r );

}
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Logic operations - summary

!Recursive routines – traverse the DAGs depth first

!Two tables:
!Unique table – hash table with an entry for each BDD node
!Computed table – store previously-computed partial results 

!Time complexity is quadratic in the BDD sizes
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Some algorithmic complexities

!Checking tautology K time
!Checking identity K time

!Satisfiability linear (#vars)

!Binary operators: AND, OR quadratic
!Smoothing, Consensus quadratic
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Motivation - again

!Why are ROBDD popular?
!Several intractable problems can be solved in polynomial time

! Of the BDD size

! In several cases, the BDD sizes grow mildly with the problem size
! Variables

!This does not mean that BDD solve intractable problems in 
polynomial time
!Few counterexamples exists
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Module 2

!Objectives:
!Variable ordering (static and dynamic)
!Other diagrams and applications
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The importance of variable order

0 1

c c

d d

a

b

0 1

d d

a

c

bb

cc c

))(( cbdaF ⊕⊕=
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Ordering results

! In practice:
! Many common functions have reasonable size
! Can build ROBDDs with millions of nodes
! Algorithms to find good variables ordering 

Function type Best order Worst order

addition linear exponential

symmetric linear quadratic

multiplication exponential exponential
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Variable ordering algorithms

!Problem: given a function F, find the variable order 
that minimizes the size of its ROBBDs

!Answer: problem is intractable

!Two heuristics
!Static variable ordering (1988)
!Dynamic variable ordering (1993)
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Static variable ordering

! Variables are ordered based on the network topology
! How: put at the bottom the variables that are closer to circuit’s 

outputs
! Why: because those variables only affect a small part of the 

circuit

! Disclaimer: it is a heuristic, results are not guaranteed

a
b

c
good order: a < b < c
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Dynamic variable ordering

!Changes the variable order on the fly whenever 
ROBDDs become too big

!How: trial and error – sifting algorithm
1. Choose a variable
2. Move it in all possible positions of the variable order
3. Pick the position that leaves you with the smallest ROBDDs
4. Choose another variable …
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Dynamic variable ordering

0 1a

0 1b
c
10

0 1

0 1c

0 1a
b
10

0 1

0 1c
b
10

0 1

a0 1

c0 1

! Tiny example:   F=(a+b)c
" We want to find the optimal position for variable c

initial order: 
a < b < c

Swap (b, c): 
a < c < b

Swap (a, c): 
c < a < b

Final order:
c<a<b
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Variable swapping

F

F1F0

F00 F01 F10 F11

xi+1xi+1

xi

F F1F0

F00 F01 F10 F11

xixi

xi+1xi+1 xi+1

)),,(),,,(,(
)),,(),,,(,(

),,(

001001111

0001110111

01

FFxITEFFxITExITE
FFxITEFFxITExITE

FFxITE

iii

iii

i

+

++

=

=

=
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Dynamic variable ordering

!Key idea: swapping two variables can be done locally
!Efficient: 

! It can be done just by sweeping the unique table

!Robust:
! It works well on many more circuits

!Warning: 
! It is still non optimal
!At convergence, you most probably have found only a local minimum



(c)  Giovanni De Micheli 44

Improvements on BDDs

! Complement edges (1990)
" Creates more opportunities for sharing 

! Fewer nodes

" For every pair (F,F’), we 
! Only construct the ROBDD for F
! F’ is given by using a complement edge to F

" Which do you pick ?
! THEN edge can never be complemented
! Only constant value

F F’

1
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Complement edges

!F = x

!Still canonical

x

1

0 1 x

1

0 1

1

x40 1

x30 1

x20 1

4321 xxxxF ⊕⊕⊕=

x10 1
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Other types of Decision Diagram

! Based on different expansion
! OFDD
! Ordered functional decision diagrams

! For discrete functions:
! ADD
! Algebraic decision diagrams

)( 100 === ⊕⊕= xxx FFxFF

x1x1

x0

10 2 3
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Boolean functions and sets of combinations 

Observing customers:
Pasta & tomantoes & (not pesto)
Pesto & (not tomatoes)

We care about what they take
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ZDDs  -- Zero-suppressed BDDs

! BDDs with different reduction rules
" Eliminate all nodes whose 1-edge points to the 0-leaf and redirect incoming 

edges to the 0-subgraph
" Share all equivalent subgraphs

! If item x does not appear in any itemset, the ZDD node is eliminated
" When average occurrence ratio of each item is 1%, than ZDD are more efficient 

than BDDs (up to 100 times)



ZDD - example

! Itemset {a,b}; characteristic function F = ab’c’ + a’bc’
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b

a

1

c

0

b b

a

10

b b

a

10

Eliminate all nodes whose 1-edge points to the 0-leaf and redirect 
incoming edges to the 0-subgraph

11 1

11

1

1

11

0

0

00

0 00
0

0
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Summary

! BDDs
+ Very efficient data structure
+ Efficient manipulation routines

– A few important functions don’t come out well
– Variable order can have a high impact on size

! Application in many areas of CAD
! Hardware verification
! Logic synthesis


